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RESEARCH OBJECTIVE AND APPROACH

r

A. Space Station Related Applications for Vision Systems

Computer vision systems which can perceive environment through

sensors and respond with appropriate action or decision have numerous

space station applications. Vision systems can be used to automate routine

space station operations thereby relieving crewmen of repetitive tasks.

This increases crew _ time avai!able for more demanding operations

requiring human skills. Some of the routine operations which can be

performed by vision systems within the space station module are given
below:

1) Vision intelligent robots can be used for operations such as

locate, fetch, store and adjust.

2) During times the modules are not occupied by crewman, vision

systems can be used for "watch dog" monitoring and reporting

of unanticipated events. These include loose objects and

instruments floating by, ECLSS cabin air anomalies, etc..

3) Some flight experiments such as microgravity crystal growth

are difficult to instrument. Vision systems can be used to

monitor such experiment, record data and alert crewmen only

when necessary.

4) Vision systems are also useful for docking, servicing, assembly

and other advanced space station operations. NASA inhouse

research shows that providing computer vision capability for

orbital maneuvering vehicle (OMV)) offers several advantages:

provides independence from docking aids and communication

links; eliminates communication delay for vehicle control and

reduces operator training cost for remote control.

\

B. Research Objective

The general objective of the proposed research is to evaluate the

potential of expert system approach for the development of computer

vision system capable of performing routine tasks within the space station

modules.



C Research Approach

The knowledge base contains the descriptions of several flight

panels. Knowledge is organized and stored as files: 1) 2-D string file which

provides inclusion and left-right-top-bottom relationship among objects.

This information is used to direct search for the desired object; 2) Object

type attribute file which contains several attributes for each type of object;

3) Feature file which has prominent features of all panels; 4) Scene

description file for each panel; 5) Object location file which gives the
inclusion relations of objects.

Scene matching techniques are needed for context sensitive object

recognition. Context sensitive object recognition which recognizes the

object in the context of the scene is more reliable than context free

recognition. However, errors due to segmentation make scene matching

problem a difficult task. Imperfect segmentation may produce any of the

following errors: mismeasured objects, missing objects or relations,
merged objects, or extra objects.

This research has produced a robust graph-based scene matching

method which is capable of handling problems causes by imperfect

segmentation. The approach is very general and may be used in many

NASA and other applications. Therefore, the graph theoretic scene

matching method is described as a general technique in this report. It is

then applied to a specific NASA application (space station) in Chapter VII.
The software is developed in Pascal as well as in C.

\
\



ABSTRACT

\
\

\

The ability to match two scenes is a fundamental requirement in a variety, of

computer vision tasks. This dissertation presents a graph theoretic approach to

inexact scene matching which is useful in dealing with problems due to imperfect

image segmentation. A scene is described by a set of graphs, with nodes

representing objects and arcs representing relationships between objects. Each

node has a set of values representing various attribute measurements of the object it

represents. Each arc has values representing the relations between pairs of objects,

such as angle, adjacency, or distance. With this method of scene representation, the

task in scene matching is to match two sets of graphs. Because of segmentation

errors, variations in camera angle, illumination, and other conditions, an exact

match between the sets of observed and stored graphs is usually not possible.

In the approach developed, first the problem is represented as an association

graph, in which each node represents a possible mapping of an observed region to a

stored object, and each arc represents the compatibility of two mappings. Nodes

and arcs have weights indicating the merit of a region-object mapping and the

degree of compatibility between two mappings. A match between the two graphs

corresponds to a clique, or fully connected subgraph, in the association graph. The
:i

task is to find the clique that represents the best match. Fuzzy relaxation is used to

update the node weights using the contextual information contained in the arcs and

neighboring nodes. This simplifies the evaluation of cliques. A method of handling

oversegmentation and undersegrnentation problems is also presented. The

approach is tested with aset ot_ realistic images which exhibit many types of

segmentation errors.
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I. INTRODUCTION

The ability to match twoscenesis oneof the fundamentalrequirementsin a

variety of computer vision tasksincludingautomatic navigation,object location,

pictorial databases,and characterrecognition. The specifictask accomplished

duringscenematchingis applicationor problem dependent. Someof the more

frequently encounteredtasksare listed below:

i) Imageregistration: Let Image 1 and Image 2 be the two given images.

Assume that the field-of-view of Image 1 is completely contained within the

field-of-view of Image 2. Now, the problem of image registration is that of

locating the subimage of Image 2 which best matches Image 1.

2) Scene recognition: In scene recognition, the goal is to classify the input image

as one of the .known images. For example, in character recognition, the goal is

to classify the input character as one of a set of known characters.

3) 3-D scene construction: By matching images of a scene obtained from

different positions, one can generate 3-D information about the scene. This is

known as stereoscopic vision.

4) Object recognition: Scene matching techniques are used for context sensitive

object recognition. Context sensitive object recognition which recognizes the

object in the context of the scene is more reliable than context-free

recognition.



Because of its usefulness in practical applications, scene matching has been a

topic of interest for many years. The scene matching methods developed during the

last three decades can be classified into three major categories: template matching

methods, feature matching methods, and graph theoretic methods.

When the scenes to be matched do not differ in rotation and spatial resolution,

template matching methods such as cross correlation and sequential similarity

detection algorithms may be used [12]. The major problem with template matching

methods is the high computation associated with them. Feature matching methods

characterize each image by a pattern or feature vector and then match two images

by matching their feature vectors [18]. Feature matching methods can tolerate

minor geometric distortions. Many real world problems are not suitable for

template and feature matching methods. For example, consider two images of the

same scene obtained by sensors from different viewing points. Now the geometric

attributes such as size and shape of objects, and distances between objects, will

change from image to image. Under these conditions where most template and

feature matching methods fail, graph theoretic methods are useful.

1.1 Graph Theoretic Scene Matching Approach

Scene matching is the process of finding a correspondence between regions

of an observed image and objects in a stored representation of a scene. This

matching process is the final stage in a computer vision system, shown in Figure

1-1. During segmentation (Stage 1) the input image is partitioned into

meaningful regions. The region description stage extracts significant attributes of
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Figure 1-1: General model for computer vision systems.

each region. Relationships that exist among various regions are determined

during Stage 3 processing. Matching the input image with the stored scene is

accomplished during the last stage.

The idea of matching two scenes based on matching graphical

representations of the scenes was first developed in 1975 [1]. A graph-based

matching approach has the advantage that it can deal better with inexact matches

caused by differences in viewing angles, scaling, or illumination, or by limitations

of the segmentation algorithms used. In graph-based matching, regions in a

scene are represented by vertices in a graph, and relationships between regions



are representedbv arcs. The verticeshaveassociatedattribute values,which

mayinc!ude measurementsof such properties as intensity, texture, area, or

circularity.

A scene can be described by a set of graphs representing various

relationships among the objects. ,As an example of graph-based scene

representation, Figures 1-2 through 1-6 show a hypothetical scene and a set of

graphs using the relations of adjacency, inclusion, reflectance, and texture. These

figures are from Greene [13], who has developed a means of scene knowledge

representation.

A perfect match between the graphical representations of an observed

scene and a stored scene is an isomorphism between the two graphs. Two graphs

are isomorphic if and only [f there is a one-to-one mapping of all vertices of the

two graphs such that all adjacency relationships are preserved. In the most

general case, a matching between two graphical representations of scenes can be

a many-to-many mapping of vertices Vo of the graph of the observed scene to

vertices Vs of the graph of the stored scene. In matching two scenes, the best

match is desired. The best match may be defined as the match that minimizes

some measurement of differences in attributes of corresponding vertices and

relations.

1.2 Problem Statement

Variations and uncertainties in camera angle, scaling, and illumination, and

problems due to noise make exact scene matching difficult if not impossible.
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Figure 1-2: A hypothetical river/island scene.
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Figure 1-3: Adjacency graph for river/island scene.
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river

island1 island2 island3 island4

Figure 1-4: Inclusion graph for fiver/island scene.

Island3

street1 street2 Island1 Island2

Figure 1-5: Reflectance graph for fiver/island scene.

Island4

woods1 woods2 island3

t
Island2

field island1

street1 street2 river

Figure 1-6: Texture graph for river/island scene.



Graph theoretic scene matching methods are able to handle inexact scene

matching better than template and feature matching methods.

Previous research, however, tends to assume a perfect segmentation of the

input image, meaning that a perfect match to a stored model can be found.

Unfortunately, segmentation algorithms are not perfect. Several different types

of errors can occur during segmentation. Little work has been done on the

intelligent choice of relations and attributes to facilitate graphical matching in

the real world of imperfect image segmentations. A shadow can cause an

object's boundary to be incorrectly found. An apparent break in an object's

boundary can cause the perimeter to be mismeasured. Extraneous marks or

shadows may be segmented as objects that do not correspond to any objects in

the stored scene representation. Shadows or marks can cause two or more

objects to appear to the segmentation algorithm as one large object. An object

may not be visible due to glare, shadows, or occlusion. Missing or changed

relations are also possible.

In summary, imperfect segmentation may produce any of the following:

mismeasured objects, missing objects or relations, merged objects, or extra

objects. Any of these can cause a graph matching algorithm to fail unless the

attributes and relations used, and the graph matching algorithm used, are

intelligently chosen.

The objective of this research is to develop a robust graph-based scene

matching approach which is capable of handling problems caused by imperfect

segmentation.
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The development of a good graph-based scene matching method is a

significant contribution to computer vision, in general, and scene matching, in

particular. This method can be applied to solve many interesting real world

problems. Some of them are given below.

In the task of object Iocation, the input scene is first identified as one of a

number of known scenes. Once the scene is identified the goal is to locate a

particular object within the scene. If the input scene can be represented

symbolically as a set of attributed graphs, this symbolic representation can be

matched with the stored scene representation through graph isomorphism. This

allows the desired object to be located in the context of the scene, thus making

object location more reliable.

In an automatic navigation application, several scenes (e.g. aerial

photographs) are stored in memory for path finding purposes. During the actual

flight, the system compares the acquired image with those stored in memory to

stay on course. In general, the two scenes compared are obtained from different

sensor positions, and exact geometric matching is not possible. A graph theoretic

approach is highly desirable in such applications.

Pictorial databases constitute another application area for graph-based

scene matching [5,17]. In this application, a user may enter, as a database query,

a symbolic representation for a scene he wishes to retrieve. This representation

must be matched to stored representations to find the correct scene(s). Again, a

graph theoretic matching approach is useful, since the use of exact measurements

of angles, distances, and object boundaries in a query would be cumbersome. A



perfect match between the query and a stored scene representation is possible

here, since there is no image processing involved. The main problem in this

application is to index a large number of scenes for quick searching.

In character recognition, the process is to classify an input handwritten

character as an instance of a known character. In graph theoretic matching,

component lines of the character are represented as vertices of a graph, and their

relationships as arcs. This problem differs from the previously mentioned

applications, since the differences between stored and observed versions of a

character are real, and not simply due to segmentation errors or variations of

camera angle.

1.3 Report Overview

Previous research in graph-based scene matching has left several problems

unsolved, even when the segmentation process is error-free. The presence of

segmentation errors adds several new problems to the existing list. This

re p o rt builds a complete approach to the problem, from determination of

scene representation through the evaluation of match merits.

To clarify the problems associated with segmentation errors, Chapter II

presents some typical examples of segmented scenes exhibiting various types of

errors. These common segmentation errors and their effects on graphical

matching are analyzed. Chapter II also presents previous research into graphical

matching techniques and their application to inexact scene matching. On the

purely theoretical end of the spectrum, Ullmann and others [3,6,16,29] have

devised algorithms for determining graph or subgraph isomorphisms. These
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algorithms generaliy entail some modification to a basic approach consisting or"

finding a vertex mapping matrix, which indicates all possible mappings of

observed to stored vertices, then checking all possibilities bv use of a

backtracking algorithm. Another approach to graph matching entails the use of

association graphs [2,22,32]. The nodes in an association graph are defined over

ordered pairs of vertices from the stored graph and the observed graph. An

ordered pair is included as a node in the association graph if the two vertices in

the ordered pair could map to each other, based on properties of the objects thev

represent. The mapping of several vertices from the observed graph to a single

vertex in the stored graph is allowable, so that regions that were erroneously split

by the segmentation algorithm can be mapped to a single object. An arc in the

association graph from node A to node B indicates that the mappings

represented in A and B are compatible with each other. Matches are then found

by determining the largest cliques, or fully connected subgraphs, in the

association graph. This approach can be used to find common subgraphs of two

graphs.

The association graph method of matching is very promising since it has the

potential to deal with any of the problems of imperfect segmentation: missing

objects, extra objects, merged or split objects, and mismeasured objects.

The details of the vertex mapping matrix and association graph matching

techniques are presented in Chapter II. Then, previous work which was

specifically directed at the scene matching problem is presented and evaluated in

the context of the segmentation problems presented at the beginning of the
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chapter. Fne balance of the dissertation describes a new approach for

graph-based scene matching which is better suited to matching in the presence of

segmentation errors.

The first issue to be addressed is the intelligent selection of attributes and

relations to be used to represent scenes as attributed graphs. Past research has

seldom taken into account limitations of segmentation algorithms used on

real-world input scenes. The relations, attributes, and primitives used seem

sensible, but are seldom precisely defined, and have not been evaluated in the

context of imperfect segmentations. A single set of attributes and relation,_ may

not be appropriate for several different types of scenes. For example, in an

aerial photograph, the relations of adjacency and inclusion are natural choices,

but in a scene consisting of well-separated blobs on a uniform background, these

relations would not be useful.

Some obvious attributes that can be used to describe regions are size,

intensity, shape, and texture. Attributes such as size and intensity are usually not

useful unless they can be scale- or intensity- normalized first. Some attributes,

such as perimeter, are quite susceptible to noise or limitations of

boundary-finding algorithms. Also, differences in scale may cause

disproportionate differences in perimeter measurements.

The relations used to describe a scene depend on the type of scene. Some

useful relations have been investigated by Greene [13]. In an aerial photograph

with regions that have shared boundaries, adjacency and inclusion are sensible

choices. In a scene that can be approximately rotation-normalized, the relations
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left-of and above make sense. Other relations, such as Iarger-than,

more-textured-than, or brighter-than, are possible. The use of transitive or

intransitive relations is another choice to be made. The use of an intransitive

relation can make it more difficult to handle the problem of missing objects. In

Chapter III, the selection of attributes and relations to minimize problems due to

segmentation errors and to facilitate inexact matching is discussed.

Chapter IV begins the description of a graphical matching technique that

allows for inexact matches. The starting point of the work presented here is to

assign weights to the nodes and arcs of the association graph, according to how

good a node-to-node compatibility is and how good a mapping-to-mapping

compatibility is. An algorithm to find the 'best' clique in such a weighted

association graph will be presented.

In Chapters V and VI, the use of weighted association graphs for inexact

scene matching is developed. In Chapter V, a relaxation algorithm for updating

the node weights of the association graph is presented. A simulation is run on

several variations of an example scene, including problems of extra and missing

objects, as well as mismeasured attributes and relations. The use of binary

relations is contrasted with the use of real-valued relations. Another difficult

problem is that of oversegmentation and undersegmentation. In Chapter VI, the

basic algorithm of Chapter V is expanded to handle these problems. A

simulation is run on example scenes that exhibit these problems, using

real-valued relations.

i
i

i

i"
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Chapter VII describesanapplicationof the matchingalgorithm developed

here to a real-world scenematchingproblem. A systemto demonstrateinexact

scenematchingfor object location was developed for the National Aeronautics

and Space Administration (NASA), at Marshall Space Flight Center. Object

location would be a necessary capability in a machine vision/robot arm system

for use in the space station laboratory module, which could ultimately handle

routine tasks such as fetching and storing objects and monitoring experiments. In

this system, we incorporate scene representation, matching, and match

evaluation techniques developed in this research. Chapter VII includes the

results obtained by running the relaxation algorithm on an actual scene of a

space shuttle simulator panel which was used as a realistic test image for the

object location system. This chapter also includes a discussion of the practical

considerations of using this algorithm on a real-world problem of realistic

proportions.

Chapter VIII is an evaluation of this work, its limitations and possibilities

for future research.



II. PREVIOUS RESEARCH

A graph-based or graph-theoretic approach for scene matching was first

reported in 1975 [1]. Since then, several researchers have attempted and succeeded

in dealing with inexact matches based on topology-like features. In this chapter, the

existing graph theoretic scene matching methods are summarized and then analyzed

to determine the implications of imperfect segmentation on their performance.

.Also, the analysis of various types of segmentation errors and their effect on graph

theoretic scene matching methods is needed in determining the direction for future

research. Different types of image segmentation errors are discussed with

illustrations in Section 2.1.

2.1 Segmentation Errors

A robust, reliable, and accurate image segmentation system must form the

foundation of every computer vision system. However, in the last three decades,

research has not yet produced a truly reliable segmentation system which can

handle varying imaging conditions and noise. There are several factors which

make image segmentation a difficult problem, and Hung has addressed these

problems in detail [15].

With the help of examples, in this section a few errors which are common to

image segmentation are illustrated. Three space shuttle simulator panels before

and after segmentation are presented in Figures 2-1 through 2-3. The

14
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Ca)

Cb)

Figure 2-1: Segmentation errors: merged and missing objects.
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(a)

(b)

Figure 2-2: Segmentation errors: extra objects.

OR_GtNAL P,_GE IS
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(a)

(b)

Figure 2-3: Segmentation errors: split objects and mismeasured boundaries.
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digital image captured by a solid state camera is segmented by using

segmentation software on a commercially available image processing system

(Perceptics). During segmentation, one or more objects may go undetected.

Object A in Figure 2-1(a) is not present in the segmented image, Figure 2-1(b).

This type of error is normally due to poor contrast between the background and

objects. Blurred edges may also be the cause for this type of error.

When the boundau between two objects which are close to each other is

not dear, undersegmentation is possible. In an undersegmented image, several

objects may merge together to form a single region. In Figure 2-1(a), objects B

and C merge to produce a single region in Figure 2-1(b). Similarly, D and E

have merged together.

Shadows, glare, and sometimes severe noise may result in extraneous

regions in the segmented image which do not correspond to any real object in the

scene. In Figure 2-2(b), A is a cluster of extra regions which are due to the text

printed on the panel. It is not easy to mask or prevent such regions from

appearing in the segmented image. Region B corresponds to a scratch on the

panel.

The presence of shadows and noise may also cause oversegmentation in

which pixels belonging to an object are partitioned into several disjoint regions.

In Figure 2-3(a), object A is split into three regions.

Poor segmentation may yield incorrect values for geometric and intensity

attributes used to characterize regions. Object B in Figure 2-3(a) appears much
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smallerthan its actualsize in Figure 2-3(b). This is due to the inability of the

boundary,detectionalgorithm to handle the shadowwithin the bright object. The

neteffect is a setof distorted geometricattributes.

2.2Implications for Graphical Matching Methods

In the graph theoretic approach, two scenes are matched by matching their

graphical representations. Segmentation errors affect attribute values of nodes

as well as the structure of the graph. Various effects that segmentation errors

can have on graph representation of scenes are given below.

Mismeasured attributes: Since the segmentation algorithms will not find

perfect region boundaries, an exact match between regional descriptions of an

observed region and a stored object would be a rare occurrence. One must

consider that a region may map to a particular object if its regional description is

similar enough to that of the object. This implies that the selection of attributes

to be used for describing regions is very important, since possible mappings

should not be ruled out on the basis of attribute measures that are unreliable

because of segmentation errors. As seen in Figures 2-1 and 2-3, a region's

perimeter is an example of such an unreliable attribute.

Reversed relations: In the case of relations such as 'adjacent-to, 'left-of,' or

'above,' it may be possible to find exact matches. However, we have seen that

segmentation problems may cause errors in relations as well as attributes. For

example, positional relations such as 'left-of or 'above' may be different in the

segmented image because of rotation changes or mismeasured boundaries that

cause region centroids to be shifted. If the relation 'left-of' is defined based on
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horizontalpixelvaluesof objectand regioncentroids,a very slight rotation can

causetherelation to beoppositein the observedscene. In other words, selection

anddefinitionof relationsarecritical steps. As far aspossible,relationswhich

arelesssensitiveto segmentationerrors mustbe chosen.When possible,

real-valuedrelationsshouldbeusedinsteadof binary relations,so that when

seekingamatchbetweenobservedand storedscenes,one can look for similarities

in relations rather than exact matches.

Missing objects and relations: Segmentation errors may change the

structure of the graphical representation of the scene. When parts of a scene are

not visible in the input image, or when there are occluded objects, the graphical

representation will have missing nodes. Missing relations among objects result in

missing arcs. An example is shown in Figure 2.4. In the stored scene, region B

includes region A. Because the scene is only partially visible in the observed

image, region B does not include region A.

Extra objects and relations: An unexpected object appearing in the scene

corresponds to an extra node. If the extraneous region is not similar to any of the

objects in the stored scene, it may be ignored. If it is similar to one or more

objects, then the scene matching problem becomes more complicated. An extra

relation between two objects in the observed scene corresponds to an extra arc.

One common situation that could lead to this problem is an occluded object

along with use of an intransitive left-of relation. This situation is shown in Figure

2-5. Here, object B is not visible in the observed scene, so the relation A left-of
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Figure 2-5: Intransitive relation causes extra arc (a,c) in observed graph.
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CBecomesanextraarc. This problem is eliminated if transitive relations are

_;_ed. Of course with some relations such as adjacency (shared boundaries), a

transitive relation cannot be used.

Split and merged objects: The presence of split or merged objects in the

segmented image causes the structure of the observed graph to differ from that

of the stored graph. If an object is split into two regions, the observed graph will

contain two nodes corresponding to that object rather than one, and may have

extra arcs representing the relations between the two nodes. If two objects are

merged together, the opposite problem occurs.

In summary, missing nodes, extra nodes, missing arcs, and extra arcs are

possible, due to segmentation errors. This may alter the structure of the graph

representation of the input image. The graph theoretic matching method must

be capable of dealing with the above structural changes. In the rest of this

chapter, existing graph-based scene matching methods are presented and

evaluated in view of segmentation errors.

2.3 Previous Research in Scene Representation and Matching

Graph-based scene matching methods can broadly be classified into two

categories: vertex mapping matrix methods and association graph methods.

Both approaches accomplish matching based on the principle of graph

isomorphism. There are many terms having to do with graph isomorphism that

should be defined, since different authors use these terms in different ways.

Shapiro and Haralick provide definitions of many graph-theoretic terms, and

Some of them are described below [26].
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Graph Homomorphism: A graph homomorphism from Graph G to Graph H is

a mapping in which all vertices of G map to a subset of the vertices of H such

that if Vertex c; maps to a "and Vertex t) maps to O" (a" _ b" ), then any relation

that exists between _ and b in G also exists between ct" and b "in H.

Homomorphism need not be a one-to-one mapping. Several vertices in G can

collapse into a single node in H.

Graph monomorphism: A graph monomorphism is a homomorphism that is one

to one. In other words, each node of G maps to a distinct node of H, while

preserving the arc relations of G, although there may be extra nodes or arcs on H

that have no counterparts in G. The term subgraph isomorphism seems to be a

more common term for relational monomorphism, and it is the term used in this

dissertation.

Vertex-induced subgraph isomorphism: A vertex-induced subgraph

i_morphism is a special case of subgraph isomorphism. If there is a subgraph

_somorphism from G to H, and if for all vertices a and b in G mapping to c2 "and

:, in H. respectively, the relations between a and b in G match exactly with those

between ct "and b "in H, then the isomorphism is a vertex-induced subgraph

isomorphism.

Graph isomorphism: A graph isomorphism is a mapping in which each vertex in

G maps to a unique vertex in H, and each vertex in H is mapped to by a unique

'.ertex of G. It is a perfect graphical match.
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Finding an isomorphism between two graphs is an NP-complete problem,

since the number of mappings to try for n nodes is O(n!). The computation is

exactly proportional to n! only if all possible node mappings are tried. When the

number of mappings can be restricted to a small number (based on graph

properties), the problem can be solved in a reasonable amount of time.

2.3.1 Vertex Mapping Matrix Approach

One method for finding graph (or subgraph) isomorphisms involves

setting up a matrix called the vertex mapping matrix. The rows of the matrix

represent the vertices of the subgraph G, and the columns represent the

vertices of the graph H. A value of 1 at position (x,y) in the matrix indicates

that vertex x in G could map to vertex y in H. A basic algorithm for finding

isomorphisms using the vertex mapping matrix approach is as follows:

1) The initial vertex mapping matrix M o is a binary matrix which is formed

bv comparing the in-degree and out-degree of each vertex in G with all

vertices in H. _/o 7 is set to 1 iff the in-degree and out-degree of x in G

are less than the in-degree and out-degree of y in H, respectively.

Otherwise, ,Wo. y is set to 0. If other constraints on nodes are known,

they too may be used in narrowing down the possibilities in the vertex

mapping matrix.

2) Some of the ones in M o are changed to 0 to obtain a matrix M' such that

the following are true:

a) There is exactly one 1 in each row of,\l'.
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b) There is at mostone 1in eachcolumn of.\l'.

A givenM o matrix may yield many matrices :_,I" to satisN' ',he above

conditions. These matrices may be found by a backtracking procedure.

3) For each M" found in (2), compute matrix C as

c = (3.4"(M'B)r) r (2-1)

Now, graph G is isomorphic to a subgraph of H, with the mapping given

by +V,t". iff, for all i and j, if .q,, -' 1 then C,j -- 1. For vertex-induced

subgraph isomorphism, C must be equal to A.

Example:

This example illustrates the vertex mapping matrix method for

determining subgraph isomorphism. Two graphs G and H are shown in

Figure 2-6. (Note that G is a subgraph of H.) Applying the above procedure

to this problem, we obtain

1234

1 1101

._to: 2 0100

3 0110

The backtracking procedure will produce two possibilities for M ":

1234 1234

1 !000

-_I'!=2 100

3 010

1

3,I'_ = 2

3

0001

0100

0010
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_ppl>ing Equation 2-1 to these matrices gives:

010 011

c,: 001, and Ca= O0 i.

000 000

Since C_ - A, the mapping represented by M'" _is a vertex-induced subgraph

isomorphism (i.e. there are no missing arcs among vertices in the subgraph).

The matrix C 2 satisfies the broader condition for subgraph isomorphism (if

-1,, ,: I then C ,j ,: 1), in which there may be missing arcs in G.

Several modifications to this basic algorithm have been suggested in

order to speed up the algorithm [3,6,16,29,30]. The modification proposed by

UIlmann [29] consists of reducing the number of ones in M o before using the

backtracking procedure. If Vertex ct in G can map to cz" in H, then M o, o. is 1.

If b and c are neighbors of a in G, then they must map to some b "and c" in H

which are neighbors of a" If this is not true, then M _,°_. is changed to 0. This

ensures that every '_,,1"that can be obtained from M ° is an isomorphism.

There is no need to compute the matrix C to check for isomorphism.

Ullmann suggests that this procedure be continued until no 1 in the vertex

mapping matrix is set to 0 during a complete iteration.

Mittal [16] describes an algorithm for directed graph isomorphism in

which properties other than in-degree and out-degree are used to reduce the

number of mappings to be tried. He finds the distances between all pairs of

vertices in each graph using Floyd's algorithm. The vertices of each graph are

then partitioned into several classes such that vertices that are in the same

class have the same in-degree and out-degree. Also, vertices in the same class
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are all separated from each other by a fixed distance. A vertex from G can

map to a vertex from H only if they belong to identical classes. Although

many possibilities are eliminated, there may still be backtracking required to

determine some remaining mappings. This approach is only for

isomorphisms, not for subgraph isomorphisms or other imperfect matches

between graphs. So, it is not appropriate for scene matching applications, in

which exact isomorphism may be a rare occurrence.

2.3.2 Association Graph Method

Another method for finding graph isomorphisms is the association graph

method. Rather than representing a possible mapping by a 1 in the vertex

mapping matrix, it is represented by a vertex in the association graph. An arc

between two vertices in the association graph indicates that the two mappings

represented by the vertices are compatible. In order to find an isomorphism

or any subgraph-to-subgraph mapping from the observed to the stored graph,

a maximal clique (fully connected subgraph) in the association graph is

sought.

In a scene matching application, the nodes represent region-object pairs.

Arcs between nodes represent compatibilities between pairs of mappings.

Nodes in the association graph exist if a region-object mapping is possible,

based on similar local properties of the regions and objects. An arc exists if

the relation between the two regions matches the relation between the two

corresponding objects. In order to determine a mapping from observed scene

to stored scene, the largest maximal clique in the association graph is found.
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Example:

Fi_mare 2-7 shows the association graph for the graphs shown in Figure

2-6. Each 1 in M°gives a vertex in the association graph. Two nodes (x, 7 )

and ( x', y" ) are connected by an arc if and only if the following condition

holds:

If.r is adjacent to .,c" then 2/is adjacent to y"

For isomorphisms, the association graph cannot have arcs between nodes

(x-, 7 ) and (>c. 7") or (x. 7) and (.'c', 7), since this implies 'collapsing' a

pair of nodes in G or H into one node. If we wish to allow for

homomorphisms, these arcs are permissible. The association graph in Figure

2-7 contains two largest maximal cliques: {(1,1), (2,2), (3,3)} and {(1,4), (2,2),

(3,3)}. The first clique is a vertex induced isomorphism (the solution

obtained from M" _in Section 2.3.1) and the second clique is a subgraph

isomorphism (M" 2).

Figure 2-7: Association graph: cLiques represent isomorphisms.
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.-knalgorithm which maybe used for finding maximal cliques is given

below:

1) Assumeall vertices are in the sameclique.

2) Check pairs of vertices; if there is no arc between them, then they must

be in separate cliques. Split the potential clique into two parts; one with

vertex x and not y, and the other with vertex y and not x. Each part

contains all of the other vertices of the original potential clique.

3) Recursively perform (2) on each potential clique. When no more

splitting is needed, all the remaining potential cliques are actual cliques.

The maximal cliques are the ones that are not subsets of any other

cliques.

Figure 2-8 is an illustration of this clique finding algorithm on the

example of Figure 2-7. Each group shows the potential cliques at each

iteration of the splitting process, separated by semicolons. Maximal cliques

are marked by asterisks. The groups that are crossed out are duplicates of

groups previously considered or are subsets of maximal cliques previously

found.
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ItecationI:

([,i)(1,2)(1,4)(2,2)(3,2)(3,3)

Iteration 2:
,-_ _-) _ .

(1,2)(1,4)(2,2)(3,2)(3,3)

Iteration 3:

1,1)(2,2)(3,2)(3,3); (1,4)(2,2)(3,2)(3,3);
1,2)(2,2)(3,2)(3,3); <1 ,,_'_ ._w_ ._,t.2 ._,

Iteration 4:

*(1,1)(2,_)(a,a);
(t,4)(2,2)(a,3),

(1,_)(a,2)(3,a),

2,2)(3,2)(3,3);

(2,2)(3,2)(3,3)

Iteration 5:

--,--7\.._..¢],

1,2)(3,3);
"}\[? */\.

\,-,,-- / \-' ),-' ],

(3,2)(3,3);
,.¢_--j\.._),-_ /,
"2 ")\{_ IN

k" ,-- / \" '" /

Iteration 6:

*(3,2);
*(1,2); _;

Figure 2-8: Illustration of a parallel clique finding process.

2.4 Previous Research on Inexact Graph Theoretic Matching

The algorithms described in Section 2.3 are simply intended for matching

graphs where exact graphical matches can be found. However, in scene matching

applications, an exact match is a rare occurrence. Previous research on inexact

scene matching using the graph theoretic approach is summarized in this section.

Tsai and Fu describe an error correcting subgraph matching algorithm

[27,28]. In this approach, the observed or input scene is represented as an

attributed graph (graph with weights on vertices and arcs), and matched with part

of the stored graph by measuring the amount.of distortion of vertices and arcs

needed to obtain a match. The attributed graph may have missing or
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misrneasurednodes and arcs. Missing nodes are due to missing objects, and

mismeasured attributes are due to noise, lighting conditions, or geometric

distortions. Similarly, missing nodes or deformed nodes may result in missing

arcs. Noise may alter the weights associated with an arc. The assumption of

their approach is that the pattern deformation probabilities or densities can be

determined, so that the conditional probability P ( m 1oa" ), where m" is the

observed scene and c_ is the stored scene, can be computed. In other words,

deformation probability densities are used to obtain the maximum likelihood

solution. In a problem such as character recognition, it is possible to find these

probability densities using a sample set of characters. However, in scene

matching, determining the probabilities of an object being missing or an attribute

being mismeasured due to a segmentation error is difficult, since the

segmentation errors are not predictable. The subgraph error correcting

isomorphism approach of Tsai and Fu also allows only for one-to-one mappings.

As a result, this approach cannot handle extraneous objects in the input scene or

the problems caused by oversegrnentation or undersegmentation. Only missing

or mismeasured objects or relations are handled.

A similar approach is described by Wong and You [31]. Rather than

starting with a prototype and a set of probabilities or densities for all possible

deformations, stored scenes are represented as "random graphs." A random

graph is a pair R = (W,B), where W is the vertex set and B is the arc set. Each

element of W and B is a random variable. Rather than finding a match that

maximizes a probability measure, they find a match that minimizes a measure of
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entroPY. This method is also suitable for applications such as character

recognition, where sample patterns can be used to determine probability

distributions of the random variables.

Haralick and Shapiro [25,26] describe another approach to inexact graph

theoretic scene matching. They assume that the observed scene is a randomly

altered version of the stored, prototype, scene. Weighting functions assign

_veights to vertices in the stored graph. The weight of a vertex indicates the

importance or prominence of the corresponding object. Relations (arcs) also

have weights assigned to them, to indicate their importance. Weights on vertices

sum to 1, as do weights on arcs. An inexact mapping must meet the following

conditions:

l) Each observed object must map to the corresponding stored object well

enough. The quality of the mapping is determined by a difference measure,

and its value must be less than a predefined threshold.

z) The sum of the weights of those stored objects that do not have any

observed object mapping to them must be less than a threshold. This

ensures that there are not too many important objects missing from the

observed scene.

3) The sum of weights of missing relations (arcs) must be less than a threshold.

Haralick and Shapiro agree that defining a "best match" using all three

conditions stated above is difficult. A perfect march with very few vertices is no

good; neither is a sloppy match involving all the vertices.



Yang,Snyder,and Bilbro [.32]describe the useof associationgraphs for

finding inexact matchesin scenesthat havebeen oversegmented. They have

modified the associationgraph method by allowing multiple regions to map to

thesameobject. The approach describedrequires that after many-to-one

mappings,the adjacencyrelations between regions in the observedsceneand

betweencorresponding objects in the storedscenematch exactly. Adjacency is

theonly relation used by them.

34

2.5 Evaluation

An evaluation of the previous research in the area of inexact graph

theoretic scene matching has led to the following conclusions:

1) The existing techniques do not explicitly allow for multiple relations to exist

between two vertices. The use of several relations among the same set of

vertices is sensible in scene matching, since there are many relations among

objects in a scene.

2) Proper selection of attributes and relations is critical to the success of the

graph theoretic approach. This problem becomes even more important

when the segmentation process is not error-flee.

3) None of the methods reported in the Literature are capable of handling all

the various problems caused by imperfect segmentation. Some methods

can deal with missing vertices and arcs or with oversegmentation.

4) The probabilistic methods are suitable for problems such as automatic

character recognition where various probability density functions can be
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determined from sampledata.

5) Current applications of association graphs are inadequate since they do not

allow for any measures of merit indicating how good a region-to-object

mapping is, or how compatible two mappings are. However, this method is

more promising than the vertex mapping matrix method, since it allows for

matching of corrimon subgraphs, not just subgraph isomorphisms. This is

important because a subgraph isomorphism cannot be found when both

missing and extra objects occur in the observed scene.

Based on the evaluation presented in this section, a graph-based scene

matching method which is capable of handling segmentation errors is developed

in the remainder of this c re p o ft. Problems of attribute and relation

selection, and graph representation of scenes, are presented in Chapter 1TI. The

improved scene matching method based on association graphs is described in

Chapters IV through VI.



III. REPRESENTATION OF SCENES BY MULTIPLE GRAPHS

.-ks mentioned in the previous chapter, the problems addressed in this chapter

include graph representation of scenes, and selection of attributes and relations. In

developing the method of scene description, we keep in mind that the scene

matching process will be attempting to match observed regions to stored objects

based on similarities in local attribute measurements. Comparing relations which

exist between pairs of regions to the relations between the corresponding pairs of

objects will allow the matching procedure to use the scene context to eliminate

incorrect mappings.

Much of the existing research does not investigate the appropriateness of

various types of relations and attributes to the problems peculiar to scene matching.

We describe a set of attributes and relations that should be appropriate for many

scene matching applications. The attributes and relations used are chosen to

facilitate inexact scene matching by graphical matching techniques. The relations

used are transitive when possible, so that an observed graph with missing vertices

can be matched directly to a stored graph, by deleting only the missing vertices from

the stored graph.

Attributes and relations should be chosen in a way that facilitates inexact

matching. The matching should be fault-tolerant, but should be able to determine

the correct match, not choosing a false match as the best.

36
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3.1Graph Representation

Over the years, several methods for representing scenes by graphs have

been developed [8,18,19,26,28]. The approach used here is to model a scene by a

set of _aphs (G _, G a ..... C .,,), all graphs defined on the same set of vertices

(V t, V z ..... V,_ ). Each object or component in the scene is represented by a

vertex. With vertex V _, we associate an attribute vector

'((V_) = [.v_(V_)xa(V_)...x,(V_)]. The components of.¥(V_) are

real-valued measurements taken on the object represented by V _. For example,

,c I ( V _ ) may be the area and x 2( v _) may be the circularity measure of t.."e.

Each graph describes a particular relation among the vertices. For example, G_

may describe the adjacency relation and O 2 may describe the reflectance relation

among the scene objects.

The above approach is similar to the one used by Faugeras and Price [10].

The approach described in this section allows the use of real-valued as well as

binary relations, whereas the Faugeras and Price approach allows only binary

relations. Real-valued relations are relatively more fault tolerant and therefore

suitable for inexact scene matching when the segmentation process is not perfect.

The four rules Nven below are useful in constructing scene model graphs.

Rule 1: If a binary relation R is symmetric and V, R V ,, draw a directed arc

from V, to V,, and a directed arc from V, to V,. If V, is not R-related to

V ,, leave v, and V, unconnected. R is symmetric if and only if V, R V j

means that V, R g,. For example, adjacency is a symmetric relation. An

undirected graph may be used to describe a symmetric relation, but since

undirected graphs cannot describe asymmetric relations, for the sake of
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,jniformity, directed graphs are used to specify, all types of relations.

Rule 2: [f the binary relation R is asymmetric and if it is known that IJ', R _i. _ is

always true, then include an arc from V, to V _. If there is a possibility of V,

R V j or V j g V,, draw arcs from V, to v j and V j to v _. Rule 2 ensures that

the graph of the observed image remains a subgraph of the model no

matter what relation V, and V j have in the observed scene. 'An example

would be the relation 'above.' If only slight rotation is expected, for many

pairs of objects in the scene we can be sure of the observed 'above' relation.

However, if the centroids of two objects have almost the same y coordinate,

a very slight rotation can cause the relation 'above' to be reversed. This is

shown in Figure 3-1.

Rule 3: Each binary relation must be explicitly shown even if the relation is

transitive. If R is a transitive relation, and if v, R V j and V, R V _, then V,

R V _. According to Rule 3, the relation V, R V _ must be shown explicitly.

This forces the graph of the observed image to remain a subgraph of the

model even if V _ is missing in the observed image due to noise or improper

segmentation. (This was illustrated in Figure 2-5.)

Rule '4: In case of a real-valued relation, there must be an arc between every

pair of vertices. The absence of the relation between two vertices must be

indicated by assigning zero weight to the arcs connecting them.

3,2 Attribute Selection

Primitives used in scene matching applications fall into two categories:

regions and line or curve segments. Regions are useful primitives in applications
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Figure 3-I: Wi_ Rule 2, observed graph G3 is a subgraph of stored graph G2.
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such as aerial scenes, or when scenes consist of separated objects on a

background. Line or curve segments are used in character recognition or in

other applications in which scenes can be represented as line drawings. Both

types of primitives may be used in the same system.

Attributes that can be used to reliably distinguish among the objects in a

scene are useful in narrowing down the set of regions that can map to a

particular object. However, there is a tradeoff involved, since the best attributes

to use may also be the most difficult to measure because of high computation or

special equipment needed. The characteristics of typical objects encountered in

scenes, and the types of errors a given segmentation algorithm is prone to make,

must be considered in selecting attributes. Any attempt to find one universal set

of attributes useful for every application is futile.

Attributes can be classified into two basic types: region-wide attributes and

geometric attributes. Region-wide attributes are averages over the entire area of

a region, and do not depend on shape. Values of some geometric attributes

depend on a region's size, and others depend on shape. Hence, some geometric

attributes are sensitive to errors in the detection of a region's boundary. Some

examples of each of these types of attributes are given below.

Region._de Attributes

Intensity:

boundary.

This is the average brightness of the pixels contained within the object

This attribute is sensitive to changes in illumination and sometimes to
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changes in sensor position. Because it depends on the boundau, segmentation

errors can cause errors in the intensity measure if the region is not of uniform

intensity.

Te.'aure: One measure of texture is the variance of the histogram of the region's

intensity. As with intensity, boundary detection errors can cause errors in texture

measure if the region does not have a uniform texture.

Color: When an image is obtained by a color camera, values for the amount of

red, blue, and green at each pixel are available. The color of a region can be

defined as a set of coefficients representing the average of the red, blue, and

green values respectively over the area of the region.

Range: Range is the distance of the object from the sensor. A range finder is

needed to obtain this measurement. It is useful in distinguishing objects from

marks that occur on a background, as in the simulator panel scenes shown in

Chapter II.

Region-wide attributes are often useful when segmentation errors are present, as

they are less sensitive than geometric attributes to errors in the detection of an

region's boundary.

Geometric Attributes

Attributes to Describe Curves: Some attributes useful when curve segments are

the primitives being used are curve length, length of a line between the curve's
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e_dC,oints. _otal angle change from one end to the other, and symmetry. [3.3]. The

main difficulty in using curve segments is to determine where to break a complex

cur_'e into primitives. Ordinarily they are broken at inflection points. Noise and

segmentation errors can cause discrepancies between observed curves and their

stored counterparts.

Perimeter: This is the length of the region's boundary. Perimeter is especially

susceptible to segmentation errors, but is invariant to translation and rotation.

._ea: The number of pixels contained within a region's boundary is the area.

Since it depends on boundary, this attribute is also sensitive to segmentation

errors.

Circularity: The circularity of a region can be defined as

4r_x area / perimeter _ This gives a circularity measure of 1 to a circle, rt/4

to a square, and smaller values for rectangles with increasingly uneven side

lengths. This attribute is sensitive to boundary detection errors, but is invariant

to scale, translation, and rotation.

Length, height: The length (height) of a region in number of pixels in the

horizontal (vertical) direction can be useful. However, it is sensitive to changes

in rotation.

Extent: The extent of an object can be defined as the product of its length and

height. This measure is much less sensitive than the area measure to

segmentation errors, although it is sensitive to rotation.
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Elongation:The ratio of length to height can be called the elongation of the

ooiect. This simple indicator of shape is often useful in distinguishing among

diifererlt objects. It is invariant to scale, although it is sensitive to rotation.

Minimum bounding rectangle: The area, length, and height of the smallest

rectangle that can enclose the region are useful measures, less sensitive than area

to segmentation errors, and not sensitive to rotation. However, it is harder to

compute than the extent of the region.

Rectangularity: Rectangularity is the ratio of the region's area to the area of its

minimum bounding rectangle.

Geometric attributes that depend on the measurement of perimeter are

susceptible to segmentation errors. Those that depend on length and height

measures are less susceptible to these errors.

The choice of attributes should be tolerant to noise and errors. A pattern

vector for each object can be obtained, components of which are relatively

insensitive to noise, scaling, and rotation. Differences between pattern vectors of

observed regions and stored objects are used to determine which regions could

map to which objects, based on local properties alone. If a region's pattern

vector does not fall within the allowable distance to any stored object, the region

is disregarded. If a region is a possible match for more than one object, the

context of the graphical relationships among objects will be used to determine

which object it actually represents.
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3.3 Relation Selection

It is important to select relations so that inexact matches are facilitated.

Relations may either be binary, (i.e. the relation either exists or does not) or

real-valued. The following sections describe sensible bina_ relations that may

be used for scene descriptions, and real-valued counterparts, which provide an

improvement over binary relations in the case of inexact segmentation.

3.3.1 Binary Relations

Relations may be classified into three groups: comparative relations,

positional relations, and topological relations. The binary forms of these

types of relations are described beIow.

Comparative Relations: Comparative relations are found by comparing

values of attributes of two regions. Any attribute may instead be expressed as

a comparative relation. For example, intensity, texture, area, and circularity

attributes can be expressed as the relations brighter-than, more-textured-than,

larger-than, and more-circular-than, respectively. An advantage of expressing

these values as relations is that scaling is not necessary. However, if they are

not expressed as attributes, they cannot be used to eliminate possibilities for

region-object mappings.

Positional Relations: The relations left-of and above are commonly used to

describe the relative positions of two regions [26,31]. However, these

relations are seldom precisely defined. There are several possible definitions

of left-of and above.
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A could be consideredIeft of B if:

1) all y coordinates in object A are lessthan all y coordinates in object B.

2) somey coordinate of A is lessthan all y coordinates of B.

3) there is a horizontal line passingthrough somepixel in A and somepixel

in B suchthat the y coordinate of the A pixel is less than the y

coordinate of the B pixel.

4) the y coordinate of the centroid of A is lessthan the y coordinate of the

centroid of B.

5) the centroid of A lies within the left-of quadrant shown in Figure 3-2.

Someof thesedefinitions are inherently transitive, suchasthe last two. If

relations used in graphsto describescenesare transitive, matching by

subgraphisomorphism is facilitated, becausethe row and column of a missing

vertex canbe deleted from the storedgraph's matrix, and the remaining

matrix will be a perfect match. For example, in a left-of relation, if an

intransitive relation is used and an intermediate vertex is missing, the

observed graph will have an arc that is not present in the stored graph, so the

observed graph is not a subgraph of the stored graph.

The use of the 'left-of and 'above' relations allows a scene to be

described in an inexact manner, allowing for matches even when a change in

camera angle or a slight rotation occurs. The definition of 'left-of based on

Figure 3-2 allows for scenes that appear quite different to be represented by

the same graphs. The fourth definition given above may be more pleasing

intuitively, although it too allows for very different scenes to have the same

representation. An advantage of the fifth definition is that we may use an
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overlapping angle region in which both of the relations 'left-of and 'above'

hold. With this approach, the tolerance for rotation of the scenedoesnot

changeas the distancebetween the objects changes.

\ /
•Abo re

\ /
\ /

/_@"--- O_ject Cent.reid
Left-of

/ \

/ \

/ \

Figure 3-2: A possible definition of relations 'left-of and 'above.'

A problem with the left-of and above relations is that they are sensitive

to rotation. One way to deal with this problem is to allow for overlapping

ranges for the two relations. In the stored scene, region A is specified as

being left-of and above B. In the observed scene, one or the other will occur,

as long as the rotation is not too large. This way, we have a subgraph

isomorphism, because the observed scene is missing a relation, but will not

have an extra relation. The overlapping of ranges is shown in Figure 3-3.

Another useful approach to this problem is'explained in the next section.
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Figure 3-3: 'Left-of and 'above' relations with overlapping domains.

Topological Relations: The relations of adjacency and inclusion are useful in

scenes such as aerial photographs. A boundary pixel of a region is defined as

a pixel which has a neighbor belonging to another region. Region A is

adjacent to Region B if and only if there are one or more boundary, pixets of

Region A that have neighbors that are boundary pixels of Region B. Region

A is included in Region B if and only if Region A is part of a composite

region, S, such that all boundary, pixels of S are neighbors of boundary pixels

of B. Region A may be the only region in S.

3.3.2 Real-valued Relations

Whenever a binary relation is used, variations in the observed scene can

cause the graph representations to vary widely. With binary relations,

Region A is either adjacent to B or not; either above B or not; either brighter
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than B or not. It is preferable to avoid theseeither-or relations, sincea slight

changein rotation or illumination, or a slight segmentation error, can cause

these relations to be reversed. For relations that can be measured as real

numbers, a real-valued relation may be used.

Figure 3-4(a) shows the disadvantage in an either-or decision about

adjacency. Observed regions A and B match obj'ec_s a and b, but because of a

segmentation error, the observed regions are not adjacent to one another.

Figure 3-4(b) shows the same problem with the relation of inclusion.

Because of a segmentation error, region B is not included in region A, even

though A wraps around B to a large extent.

The difficulty with the left-of and above relations is shown in Figure

3-4(c). Whether the relations are defined in terms of four quadrants or by

comparing y coordinate values of the centroids, a slight rotation can cause the

binary relation to change.

In Figure 3-4(d), the problem with a binary relation brighter-than is

shown. Due to shadows, glare, or changes in illumination, particularly with

shiny surfaces, the brighter-than relation between two regions may be

reversed.

The use of real-valued relations allows for a more accurate

representation of the relations between objects, and a more accurate

evaluation of how similar or different two relations are.
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Figure 3-4: Disadvantages of using binary, 'either-or,' relations.
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For example, if the adjacencyrelation is representedas two real-valued

arcs,the percentageof each region's boundary that is shared with the other

region can be the value of the arc. This is shown in Figure 3-50). If the

stored relation A adjacent-to B has a value of 1%, and the observed relation

A adjacent to B has a value of 0%, the difference is just 1%. This more

accurately reflects the difference in adjacency relations between the observed

and the stored scene.

This real-valued representation of adjacency as percentage of boundary

shared eliminates the need for a separate representation of the inclusion

relation. We define a boundary pixel of a region to be any pixel that borders

on a pixel that is a part of a different region. By this definition, a region that

includes another will have outside and inside boundary pixels. Whenever B

adjacent-to A has a value of 100%, it implies that B is included in A, since

100% of its boundary pixels are adjacent to A. In Figure 3-5(b), object B

adjacent-to A has a value of 100%, and region B adjacent-to A has a value of

85%, so that there is a difference of 15%, rather than a total mismatch as with

the binary inclusion relation.

For representation of positional relations, the angle that a line between

object centroids makes with the horizontal may be used. Then, in comparing

the observed scene and the stored scene, the angle difference between a pair

of regions and a pair of objects will be 0 if a perfect match, and 180 degrees if

completely opposite. Figure 3-5(c) illustrates the advantage of using this
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Figure 3-5: Real-valued relations allow similarity to be conveyed.
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representation. A slight rotation changesthe value of the angle relation from

i..30degreesto 137degrees,rather than changingthe binary,relations from

aboveand not left-of, to not aboveand left-of.

Even with a real-valued relation to represent the positional relation

betweenobjects, a substantial amount of rotation will causeproblems. A

scenemaybe rotated in suchaway that a falsematch of regions to objects

may look correct becauseof the anglemeasures. So,if substantial rotation is

e,,cpected,it is better to handle the problem by first finding certain

distinguishing features that canbe usedto rotation-normalize the scene. If

only slight rotation is expected,the comparison of anglemeasureswill provide

good results.

Another method for handling rotation is to expresspositional relations

asreal values, and then to try the matching algorithm on severalversionsof

the sceneat different rotations. It would then be expected that the best match

would bewith the scenethat hasbeen rotation-corrected.

For the brightness relation, and other relations between region

attributes, aswell, it is helpful to put a real value on the relation. For

example, the value of the relation A brighter-than B canbe expressedasthe

difference of the intensity of A and the intensity of B. In Figure 3-5(d), this

difference is 20% for the stored sceneand -1% for the observedscene,the

discrepancypossiblydue to a shadowover region A. Sothe difference

between the two relations is 21% when a real-valued relation is used,as

opposed to a reversalof relations when a binary brightness relation is used.
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.-M'_otheruseful real-valued relation is distance. This relation is useful is

discriminating betweenpairs of regions that are almostadjacent, when

adjacencyis described by the real-valued relation explained above,and pairs

that are not evenclose together. For example,in Figure 3-6, the adjacency

relations between regionsA and B, and between regionsA and C, are

identical. However, the pair of mappings(RA, OA) and (RA, OB) is more

compatible than the pair (RA, OA) and (RC,OB). The relation of distance

helps in discriminating which pair of mappings is more compatible. The

distancebetweena pair of stored objects and the distancebetween a pair of

observed regionsshould be similar if the regionsmap to the objects.

Another possibleway to define the distancerelation, for scenes

consistingof isolated blobs on a background, is that the distancefrom A to B

is the minimum distancebetweenanyboundary pixel of A and anyboundary

pixel of B such that a line canbe drawn between the two pixelswithout going

through another regions. If there are no two pixels that canbe joined without

going through another region, define the distanceasinfinity, or the largest

real value possible.

This distance measureshould, of course,be scaledso that scenesscaled

differently will still have similar distancemeasuresbetweencorresponding

regions. One way to accomplishthe scaling is to expressthe distance assome

proportion of the perimeter, area,or extent of the two regions.



54

A 0 Distance-£rorn S

A I_ Adjacent-to B

H i% AdJacent-to A
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B 0_ Ad3acent-to A
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A 0% Adjacent-to C

C 0% Adjacent-to A

Figure 3-6: A user'/real-va/ued relation: 'distance-from.'
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3.3.3 Adaptation of Matching Methods for Scene Matching

The algorithms described in Chapter II were simply intended for the

matching of graphs, arid are not adapted to the specific problem of scene

matching. These standard algorithms are designed to match two graphs,

rather than two sets of graphs that would be used for description of scenes.

If the graphs have no weights associated with the arcs, the arc weight in

each graph can arbitrarily be assigned to increasing powers of two. For

example, arcs in the qncluded-in' graph (matrix) may be labeled with "l's,

those in the 'left-of graph with '2's, and those in the 'above' graph with '4's.

Then, the adjacency matrices for these graphs may be added together, with

the resulting weighted adjacency matrix representing the set of graphs with no

loss of information. Isomorphisms matching a set of observed graphs and a

set of stored graphs can be found by matching these composite graphs which

are obtained by adding the adjacency matrices together. The use of multiple

graphs does not add to the complexity of the backtracking algorithm for

subgraph isomorphism, although checking the condition for isomorphism

between the A and C matrices requires a bit-by-bit comparison of arc weights.

The use of multiple graphs on the same vertex set can help to speed up

the search for isomorphisms, by limiting the possibilities to try. In- and

out-degree for each vertex in each graph is checked, as well as plausible

object matches based on object attributes. Once a vertex mapping matrix is

obtained, the problem of finding isomorphisms with multiple graphs on the

same vertex set with unlabeled arcs is reduced to matching single graphs with

weighted arcs, with no loss of information.
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Inexact matching is limited to subgraphisomorphisms in the caseof the

vertex mapping matrix approach,and common subgraphs,with no splitting or

merging of nodes,in the standard associationgraph method.

The vertex mapping matrix approach canbe modified for application to

scenematching asfollows. Eachsceneis describedby _aphs on several

reiations; for examplesleft of and above. The observedobjects are classified

in terms of what object classesthey might belong to. The classmembership is

determined by measurementof several attribute values. Measuresof texture

and circularity are useful. Allowable rangesfor thesemeasurementscanbe

allowed to overlap for different object classes,so eachobject may be a

possible member of more than one object class. This Lnformation is used to

limit the possible mappingsin the M omatrix. The relations left of and above

are determined by the relationships between centroids of objects. In the

stored representation, the ranges of left of and above are allowed to overlap

so that there are extra relations in the stored representation. This helps in

dealing with small rotations of the scene.

We assume the following to be available: list of stored objects and their

types, matrices for several relations on the stored scene, acceptable

measurement ranges for each object type, measurements of attributes of

observed objects, matrices for the relations on the observed scene.
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1)

The scene matching process is as follows:

For each observed object, determine to which object types it might

belong, based on acceptable measurements of attributes.

2) Form matrix M c, in which M ,_j - 1 i.ff object Lin the observed scene

could be of the object class to which ] in the stored scene belongs.

3) Form matrix M a , the vertex mapping matrix based on degree of vertices.

Check degrees for each graph in the set of graphs used. Use both

in-degree and out-degree for the directed graphs. The observed node

can map to a stored node if the in-degree of the observed node is no

greater than the in-degree of the stored node, and the out-degree of the

observed node is no greater than the out-degree of the stored node, for

each of the graphs describing the scene.

4) Form matrix M o = M c AND M a.

5) For the observed and stored graphs, obtain composite graphs A and B.

For a set of graphs (O o, O *,..., G _} , set G _.j*- 2 *iff _,.,* - 1 , and set it

to 0 otherwise. The composite graph O is the sum of all O _. G has all

the arc information from the set of graphs combined into one graph

which can be used in the subgraph matching algorithm.

6) Use backtracking procedure to iterate through possible M" matrices.

The Ullmann refinement may or may not be beneficial. If M o is very
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sparse,the refinement procedure may not be necessary.Compute

matrLxC and compare with A. An exact match indicates that ._,l"

specifies a vertex-induced subgraph _somorphLsm of .-{ to B.

K C - A > [ 0 ], there may or may not be a subgraph isomorphism. For

each A_. / and C _.j, if for any corresponding pair of bits a and c, the condition

((NOT a) AND c) is true, the matrix C does not represent a subgraph of

matrL, c A. If this condition is false for every, corresponding pair of bits for

each .4 _., and C,. j, then C is a subgraph of A.

The vertex mapping matrix approach lends itself best to problems of

exact subgraph isomorphism, since various graph properties can be used to

eliminate possible mappings. If we wish to allow the possibility of inexact

matches between relations, the matrix M a cannot be used in eliminating

possible mappings. Also, occurrences of both extra and missing objects in the

observed scene cannot be handled, since the observed scene would not be a

subgraph of the stored scene.

Of the two approaches to finding graph isomorphism, the association

graph method is better suited to finding inexact matches. The association

graph method may also be modified to match two sets of graphs describing

scenes. All possibilities for inexact matches can be taken into account. A

missing object :/will correspond to a situation in which the clique defining the

mapping does not contain any node (X, y ) for any region X. An extra region

X corresponds to the clique not containing any node (X, y ) for any object 7.

These possibilities are handled with no extra modifications to the association
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graph method. Problems of oversegmentation and undersegmentafion can

also be managed by this method. The simplest wav to allow for

oversegmented regions, e.g. X _ and X z, is to say that both regions map to

object 7 if ( .Y t, Y ) and ( X 2, Y ) are both in the clique defining the mapping.

Likewise, an undersegmented region, X, can map to two or more objects, e.g.

y _and y 2, if ( X, y L) and ( X, y 2 ) are in the clique. Another way to handle

oversegmented or undersegrnented regions is to include 'merge nodes' in the

association graph. For example, if regions X and Y could both map to object

x _, a node (( X, Y ), x t ) could be introduced.

The application of the association graph method to the problem of

inexact scene matching is described in detail in Chapters IV, V, and VI.



IV. ASSOCIATION GRAPH METHOD IN INEXACT .'vIATCHING

as shown in Chapter L[, subgraph isomorphism approaches to scene matching

can handle some cases of inexact matching: missing objects and missing relations.

In realistic situations, the problems due to imperfect segmentation include extra

objects, mismeasured relations, and split and merged objects. A modification of the

association graph method for scene matching can provide a better way of dealing

with these problems.

In this chapter, we first describe the shortcomings of the basic method of Yang,

Snyder, and Bilbro [32], as discussed in Chapter II, and suggest an enhancement to

the basic method, which provides a better way of dealing with the inexact matching

problems brought about by segmentation errors. The three issues to be decided in

order to implement the enhancement are outlined in Section 4.2. The issues

brought up in this chapter are addressed in detail in Chapters V and VI, in which a

new application of a relaxation algorithm to scene matching is developed.

4.1 Improvements

There are several areas in which the basic association graph approach can

be improved. In the basic method, a region-to-object mapping is considered

either possible or impossible. Nodes representing all the possible mappings are

included in the association graph, but there is no measure of merit associated

with the mappings. A value should be assigned to a node to indicate how good a

mapping is. Likewise, two region-to-object mappings are considered either

60
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compatible or incompatible, basedonly on equivalenceof the binary,adjacency

relation between objectsand between regions. In inexact matching problems,

two mappingscannot be consideredabsolutely compatible or incompatible..As

seenin Chapter II, it may not evenbe wise to consider two regions to be

absolutelyadjacent or not adjacent. Values should be assignedto relations as

well.

Similarly, the evaluation of the largest maximal clique asbeing the best

mappingdoesnot allow for anygray areasin interpretation of compatibility

[4,32]. A maximal clique maycontain dubious region-object mappingswhich are

just barely considered compatible. Again, the needfor weights assignedto nodes

and arcs is apparent.

Figure 4-1showsan exampleof a basic associationgraph, and one with

weightsassignedto vertices and arcs. Any vertex (X,y) indicates the mapping of

Region X in the observedsceneto Object y in the stored scene. An arc

connecting (XI,yl) and (X.,,y2) indicates that these two mappings are compatible.

The original method of finding a mapping from observed regions to stored

objects was to use the mapping represented by the largest clique in the

association graph. In the weighted association graph, the weight on a vertex

(X,y) indicates how compatible the mapping of Region X to Object y is, based on

attribute measurements of the region. The weight on an edge from (XI,yl) to

(Xz,yz) indicates how compatible the two mappings are to each other, based on

similarities in the relations between XI and X,., and yl and y,.. Based on these

weights, it may be determined that a smaller clique, such as {(A,a), (B,b), (C,d)}

in Figure 4-1, represents a better mapping than the largest clique.

J
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Figure 4-I: A weighted association graph is more useful for inexact scene matching.

The approach used by Yang was designed to handle the problem of

oversegmented images, i.e. images in which more than one region may map to a

single object. The occurrences of extra regions and missing regions are also

handled implicitly by this method. However, the problem of undersegmented

regions is not addressed, the assumption being that a segmentation algorithm can

be 'tuned' so that either oversegmentation or undersegmentation occurs, but not

both. In practice, we may have cases of both problems in the same scene with

the same tuning of the segmentation algorithm.

A variation of this basic approach can h,_ndle problems of missing and extra

objects, and oversegmentation and undersegmentation. Several alternative



63

methodsof dealing with oversegmentationand undersegmentation are explored

in Chapter VI. To see that a variation of this approach canhandle all of these

problems,we can simply look at the result that can be obtained. A clique

representinga best mapping canbe missingsomeof the regions of the observed

scene,or someof the objects of the storedscene. It can contain two or more

nodesthat map one region to different objects, or nodesthat map more than one

region to one object. Alternatively, oversegmentationand undersegmentation

maybe handled by adding nodesrepresentingmultiple mappings to the

associationgraph. The flexibility of the association graph method provides a

clear advantage over other graph-based approaches to scene matching.

4.2 Problems to be Addressed

The main problems that need to be addressed in order to extend the

method to handle these issues are: I) the determination of weights for nodes, 2)

the determination of weights for arcs, and 3) the evaluation of the result, or

finding the 'best' clique in the association graph.

The weights for nodes should represent the closeness of the mapping of a

given region to an object. This can be determined by some measure of how

similar the region and the object are, based on local properties. The arc weights

represent compatibility between two mappings, so they must reflect similarities

between region-to-region and object-to-object relations. If we assume there are

no split or merged regions, the determination of these weights is fairly

straightforward. But, if there is a possibility of split or merged regions,

determining the structure of the association graph and the node and arc weights

is a more difficult problem. If we wish to maintain the idea of each node

h
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representing the mapping of one region to one object, we must determine how to

find weights for arcs between nodes representing the same region mapping to

two different objects, or the same object mapping to two different regions. [f we

abandon the idea of each node representing one object and one region, we need

a method of determining node weights on nodes that represent more than one

object (region) mapping to one region (object), and arc weights for

compatibilities of these nodes with others. The determination of weights for

problems without split or merged regions is discussed in Chapter V. The case of

split or merged regions is covered in Chapter VI.

The evaluation of the resulting weighted association graph is the most

difficult problem. First, we must find cliques that represent candidates for the

best mapping. In a large graph, this can be a computationally demanding task.

Next, we must evaluate the merits of the cliques found, to determine which is the

best. Not only the node weights representing region-object compatibility, but

also the arc weights representing compatibility between mappings, must be

considered in evaluating the merit of a clique. Do we include a node with a high

weight in a clique if all arcs connecting it to the rest of the clique have relatively

low weights? Do we include a node with low weight if its arcs have high weights?

How do we compare the relative merits of two different weighted cliques,

containing different numbers of nodes?

One approach is suggested by Davis [7], who has used association graphs in

a different application, boundary matching. His approach is first to use a
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discrete relaxation process to prune the association graph to decrease the

number of cliques to be found, and then to evaluate the cliques by the following

cost formula:

(5-t)

where ,_! (_, F (_)) measures the dissimilarity of object rand region F ( Z), and

S ,, ( F (L), F ( j ) ) is described as "the tension in the spring connecting" Land / if

they are represented by F ( L) and F (j) in the observed scene. So, this approach

assigns costs to nodes and arcs of the association graph, rather than merits.

p (rn r ) is a penalty for stored objects which are left out of the clique (implying

they were not observed in the scene), and P (rn o ) is a penalty for observed

primitives which are left out (or which do not map to any stored primitives under

the mapping represented by the clique). A problem with this approach is that

determining the values of these penalties is difficult. Another problem is that

every clique, including those that are not maximal, will need to be evaluated to

determine the mapping of lowest cost.

It is apparent that the main drawback in using this approach is the difficulty

in finding the 'best' mapping by evaluating the cliques found in the association

graph. The approach used by Davis attacks the problem by using discrete

relaxation to reduce the number of cliques to be found, but his method still

entails a complicated evaluation function.



66

Since the ultimate goal is to decide which region-to-object mappings are

correct, it seems that a reasonable goal is to determine a method for

incorporating contextual information into the node weights. Node weights could

be altered based on weights of arcs and neighboring nodes, so that cliques may

be evaluated using only the new node weights, ignoring arcs. The goal should be

to decrease the number of cliques to be tried, and also to simplff-y the

measurement of the merit of a clique, The next chapter describes relaxation

algorithms, a class of algorithms which will facilitate these goals.



V. RELAXATION ALGORITHM APPLIED TO ASSOCIATION GRAPHS

In general, the classification problem deals with the assignment of a given unit

to one of several predefined classes. Relaxation, an iterative parallel approach, has

been successfully used to improve classification performance [11,14,23,24]. Let

A t, A a ...... 4, be a set of n units, and C _, 5"2 ..... C,, be the rn classes. The

relaxation approach assumes that each A,can map to any of the rnclasses, and

assigns an initial probability for each possible mapping. Therefore, A, has rn

probabilities associated with it. Then, at each iteration, these probabilities are

updated based on contextual information. This causes one of the probabilities to

approach one and others to approach zero. The unit A, is then assigned to the class

determined by the highest probability.

In this chapter, the relaxation approach is combined with the association graph

method to obtain a better graph theoretic approach for scene matching. Relaxation

algorithms used for classification, in their original forms, are not suitable for scene

matching, so significant modification is necessary.

Various types of relaxation algorithms: probabilistic, discrete, and fuzzy, are

described in Section 5.1. Section 5.2 describes the application of relaxation

algorithms to the scene matching problem. Selection of initial node and arc weights,

updating rule, and condition for termination are presented, as well as the

interpretation of the final result obtained from the relaxation process. Simulation

results which support the theoretical concepts developed are given in Sections 5.3

67
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and5.4.

5.1 Relaxation Algorithms

As stated earlier, relaxation algorithms are used when each of a set of units

A _..... A _is to be assigned to one of the classes C 1..... C r_. In this approach,

unit A _is assigned rr_initial probabilities p,. p iz ..... p i0,where p _ is the

probability that ,4, belongs to C,. The assignment of unit A, to C, has some

degree of compatibility or incompatibility to the assignment of unit 14,_to C _.

This compatibility value is denoted by c (Z. j ; h, _:) The probabilities associated

with each unit are updated iteratively by taking into account compatibility values

and the probabilities of neighboring units. The goal is that the final probabilities

obtained will favor one mapping above all others for each unit, and that this

mapping will be the correct one. The problems to be addressed in selecting a

relaxation algorithm are the computation of initial probabilities, computation of

compatibility values, selection of updating rule, and terminating condition.

In the scene matching application, the 'set of units' corresponds to the set of

regions in the observed image. The 'classes' correspond to the set of objects in

the stored representation. In the discussion below which is specific to scene

matching, the terms 'region' and 'object' are used rather than 'unit' and 'class.'

The goal of the relaxation process as applied to scene matching differs from the

goal as used in applications such as image segmentation. In segmentation, each

unit (pixel) can map to one and only one class. Every unit must map to a class.

However, in scene matching a region can map to more than one object. Several

regions can map to a single object. There can be objects that have no regions
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mappingto them and regions that map to no objects. Therefore it is necessary,to

investigateeach relaxation approach to determine its suitabiiity for the inexact

scenematching purpose.

Relaxation algorithms canbe classified into three basic categories:

probabilistic, fuzzy,and discrete. Theseare describedbelow, and their

applicability to scenematching is discussed.

5.1.1 Probabilistic Relaxation

In probabilistic relaxation, with each object :t :, a probability vector

( P,I. P ,z ...... p _,_) is associated, where p _j is an estimate of the probability

that A, belongs to C j. If A, is a neighbor of A, and p ,,_ is the probability that

A _e C _, then c ( i, j ; h, k ) indicates the compatibility between the mappings

A,e C j and A _e C _. Its value is in the range [-1, 1] where -1 indicates total

incompatibility, + 1 indicates total compatibility, and 0 indicates irrelevancy

("don't care").

Given the initial probabilities and compatibilities between various

mappings, one can adjust the probabilities associated with each unit on the

basis of contextual information embedded in the probabilities and

compatibility coefficients associated with its neighbors. The adjustment

process satisfies the following properties:

a) If p h_is high and c(i, j;h, It)is close to 1, p,j should be increased.

b) If p h_ is high and c (t, j ; h, k) is close to -1, p,j should be decreased.

c) If p _k is low or c ( i, ] ; h, h:) is close to O, then p,j should not change
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significantly.

.an updating rule suggestedby Rosenfeld which has the aboveproperties

is givenby Equations 5-1 and 5-2 [24]:

p_;_( 1 + q_;>) (5-1)
t_

(r)

t'I

where

ttm_

(5-2)

In Equation 5-2, the products c (_, j ; h, h:) x p a_ are averaged for each

neighbor of node a,l. This average is in the range [-1,1]. In Equation 5-1, the

new value for p u is taken as the old value times 1 plus this average, so that

positive averages will increase p,j and negative averages will decrease it. This

value is then normalized so that the sum over different classes ./for p u is 1.

( r°t ) _The iterative procedure is continued until 7 }- I p,j p_l< 6 ,where 6 is
i-t j-l

a pre-specified small number.

There are some limitations in applying this approach to scene matching

problems. The assumption that each unit maps to one and only one class is

not generally valid. One region of the observed image may map to none of

the stored objects. It is possible to overcome this limitation by allowing for

the existence of a 'null' object to which regions have some probability of

mapping. If the node representing the mapping of a region to the 'null' object
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endsup with the highestprobability, for the region, it can be assumed that the

region did not map to any of the stored objects. Determining the initial

probability that a region will map to 'null' is also problematic.

A region may also map to more than one stored object, in the case of an

undersegmented scene. The region may be two or more objects merged

together. In this case, a probabilistic relaxation algorithm is not expected to

yield satisfactory results.

5.1.2 Fuzzy Relaxation

In another approach to relaxation, fuzzy relaxation, for each possible

mapping (i.e. A, e C j for all _and 1) a weight is assigned, This weight is simply

a measure of the closeness of match between unit A, and class C j. Weights

will all be between 0 and 1, but weights for a given unit need not sum to 1.

The values on arcs, c (L, j ; _, k ), are values in the range [0,1] indicating

the compatibility of mapping unit _to class jwith mapping unit h to class _:.

c(_, j :_, _) is defined as 1 if./= k, and 0 otherwise.

During iteration (r * 1 ), weight p_7 ) is updated by the following rule

[24]:

p(r°l) =- maxc(L,j;h.,k)p ) .
/2 . ,_-1

(5-3)

Figure 5-1 shows an example of this updating rule applied in one iteration on

node (A, a).
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05

087 B,b'

03 _ 05

, "_/ 0.2 / .-. ,

_.,a , _N__ p

07

05

= [0.3 - 0.8 × 0.5 - 0.7
o.5] = 0.3.5

Fitn_¢ 5-1: Kosenfeld's fuzzy updsting rule applied to node (Aa).
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The fuzzy relaxation algorithm causes some of the weights to decrease

faster than others. After a few iterations, there is no longer a change in the

order of probabilities relative to one another. The nodes with highest

probabilities are the preferred mappings.

This updating rule displays an undesirable characteristic, as shown in

Figure 5-2. In this instance, the initial node weights actually have no effect on

the final result. The values of both nodes are driven to 0.5, if the node

weights are normalized to add to 1 at each iteration. In general, if all arc

weights are the same, the node weights will all stabilize at equal values,

regardless of the initial weights. This is not a desirable characteristic in the

scene matching application. If all arc weights are the same in an association

graph (i.e. the graph is fully connected with all arcs equal), the node weights

should not all become identical, as this eliminates all the influence of the

initial node weight.

Initial Graph Resulting Graph

Figure 5-2: Rosenfeld's rule applied to a graph with all arc weights equal.

,i
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In scene matching, the fuzzy relaxation approach makes sense, since it

allows for mapping a region to none of the stored objects, if all of a region's

,probabilities' are low, or to several stored objects, if several of its

'probabilities' are sufficiently high.

When allowing for mapping of several regions to one object

(oversegmentation), there are several problems to be addressed. First, how

do we determine the arc weights joining two nodes that map different regions

to the same object? Once this is resolved, the problem is to determine if

certain nodes should be included in the clique representing the best mapping.

5.1.3 Discrete Relaxation

In discrete relaxation, an assignment of a unit to a class is considered

either possible or impossible. Rather than updating the weights on nodes, the

relaxation process deletes nodes that are considered impossible, based on

supporting values of neighboring nodes.

A usual formulation of the discrete relaxation algorithm is to assign

initial probabilities and compatibility values to 1 or 0. The following updating

rule, which can also be used with real values for fuzzy relaxation, is used [24]:

p .1)=rain maxc(i,j;h,k)p _ .
h-I k-1

An approach by Davis [7] (described in more detail in Section 5.2) uses a

different idea of "discrete" relaxation. He assigns node and compatibility
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values between 0 and l, to represent degrees of consistency and compatibility.

The initial node weights are the values p _, of the local evaluation function

that describes the cIoseness of the observed region .,-1_to the stored object C ,.

Then, a node is deleted if the support for that node,

E,," }- __ pA_,A*_,_*j (5-5)
A- L ,k;- L

is less than some threshold. As nodes are deleted, the support for other nodes

decreases, and more nodes may be deleted. The process terminates when no

nodes are deleted during an iteration. In this process, the node weights are

not updated, but values of neighboring nodes are simply used to determine if

a node is kept or discarded.

5.2 Application of Relaxation to Scene Matching

In this section, we examine the application of relaxation techniques to the

scene matching problem. Whenever relaxation is used, the questions to be

resolved are the determination of initial node and arc weights, updating rule, and

condition for termination of the algorithm.

In scene matching, we must also determine how to use the result of the

relaxation algorithm. Initially, in using weighted association graphs for scene

matching, the problem is one of how to select which nodes are included in the

clique representing the best match. The nodes included should have high

weights, and the arcs connecting those nodes to others should also have high

weights. Our goal is to have the relaxation algorithm simplify the selection of the
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clique of the association graph that represents the _best' match by choosing nodes

,,vith values above some threshold for inclusion in the clique, without having to

consider arc weights.

There have been some applications of relaxation to scene matching

problems discussed in the literature. Davis [7] describes a procedure for shape

matching using relaxation techniques. In his work, observed angles and template

angles of simple closed curves are to be matched. The process used is discrete

relaxation, meaning that the goal of the relaxation process is to delete nodes

from the association graph, not to change weights and leave all nodes m place. A

unique feature of the algorithm presented by Davis is a second step performed

after the relaxation on the nodes. A 'line graph' is created, in which the arcs of

the original association graph become nodes of the line graph, and nodes of the

original become arcs. The same discrete relaxation process is applied to the line

graph. Nodes (lines) are deleted, which also reduces the number of cliques in

the association graph. The result is a pruned association graph with many of the

less likely mappings eliminated. The use of relaxation in this way does not

simplify, the evaluation of the merit of remaining cliques in the association graph.

Faugeras, Berthod, and Price [9,10,20,21] describe the use of a probabilistic

relaxation process in scene matching of aerial images. They consider the

observed regions to be the classes of the relaxation algorithm, and the stored

objects to be the units. The goal is then to find an observed region that

corresponds to each of the stored objects. This handles the problem of extra

regions in the image that do not correspond to st_red objects. However, each
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storedobject is assumedto havean observed region in the image that

corresponds to it. But as we have seen, missing objects are a common

segmentation problem.

5.2.1 Type of Relaxation Algorithm to Use

Probabilistic relaxation has several shortcomings when applied to scene

matching. First, there is the assumption that each region must map to one

and only one object. That is the basis of assigning node weights representing

probabilities. Probabilistic relaxation updates these probabilities, and the

result is that the node with highest probability for each region is considered

the correct mapping. In order to allow for mapping of a region to none of the

stored objects, ;,ve must use a 'null' object to which a region may map.

Determining the probability that a region maps to this 'null' object as opposed

to any existing object is a puzzling problem. For a region to map to more

than one object, the best we can do with this approach is to say that if several

nodes for a region have similar probabilities which are higher than those of

other nodes, we may consider that the region maps to all of the objects

represented by those nodes. For example, a region may have nodes with

weights of 0.45, 0.45, and 0.1. We may interpret this result as indicating that

the first two nodes represent correct mappings of this region to two different

objects. A problem with this approach is apparent when we attempt to

interpret the finn result of the relaxation. We cannot simply favor nodes with

the highest values if we are to allow for mapping of a region to multiple

objects, since at least one of the probabilities in those cases must be less than

0.5.
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Fuzzy relaxation seemsto be the most appropriate for use in scene

matching. It requires none of the work-arounds needed in probabilistic

relaxation. The mapping of one region to multiple objects, or to no object,

canbe handled with somemodification to the algorithm. In the final result,

we mayinterpret nodesof highestvalue to be the best mappings.

5.2.2Initial NodeWeights

The initial node weights could be set to 1or 0, indicating whether it is

plausible that a region could map to an object basedon similarities between

attribute measurements.A better method is to determine the weight by a

measureof similarity between the region and object. Faugerasand Price [10]

describea sensibleapproach. They compute a difference rating, R (a, n),

where u is the stored representation of an object and n is the observed reg/on.

_, (5-6)
R(a,n): _ IV,,k-V_klW_S _,

k-I

where m is the number of attributes that have been measured (color, texture,

etc.), V _ and V _ are attribute values. _ _is the feature's weighting (a scaling

factor based on the size of the value), and .9 _is the feature's strength, or

importance. Then, the values are transformed to the range [0,1] by setting

/(,,,n) : 1/(R(a,n)* 1).

Ie'_ was used by Faugeras and Price to handle differences in the scales of

various attributes; for example, if the observed region has area 550 and the

stored region has area 500, this is a difference of 50 pixels, which is small. But

if two angles are compared, a difference of 50 degrees is large.
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Scalingthe attribute values of the regions before calculating R (ct, n )

may improve the results. The scaling factor can be determined by comparing

the average value of the feature among the stored objects with the average

value among the observed regions. This would allow the use of features such

as area and intensity, which may have an average value in the observed scene

that is higher or lower than expected. So, / (a, n) may be determined as

follows:

i Va _

u=l

P

(5-7)

rri

Eg(a,n) = I V,_-V _klI,/_S_
5-I

/(u,n) =
i *R(a,n)

(s-a)

(5-9)

Perfect matches receive a value of l, and increasingly bad matches have

values approaching 0. Weights below some threshold may be set to 0, to

reduce the number of possibilities to be tried.

5,2.3 Initial Axe Weights

The value of c (i, ];h, k )is based on similarity of relations between

regions A, and A h, and objects C i and C _. In each graph, if a relation exists

between the regions and also between the objects, the value of c (i, j ; h, k ) is

increased. If all relations match, c (i, ]: h, h:)is 1. If none match, the value is

0.
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If real-valued relations are used, arc weights may be determined in the

same way as node weights: higher differences in the values of relations lead

to lower arc weights.

The arc weights between nodes representing the same region

(undersegmentation) or the same object (oversegmentation) must be

determined differently.

5.2.4 Updating Rule

A fuzzy relaxation algorithm was run using several example scenes. The

first updating rule tried was

=_ maxc(_,j;h,k)p_ _ (5-10)

A scaling step,

y: y p o,
i.t j-I

++'n

S-F_ -+l
_-L ]-t

(5-11)

is performed, so that it is possible to use the condition of little change

between weights at two consecutive iterations as the terminating condition.

With this scaling step, the node weights add to the same sum after each

iteration, which makes clear which nodes are increasing and which are

decreasing.

The rule seemed appropriate for scene matching applications, since

weak mappings for other regions should not adversely affect a mapping. Only
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thestrongestmappings%r each region are used to update the probability, of a

given region-to-object mapping.

However, experimentation showed that with this updating rule, the

initial node weights are irrelevant. The averaging of weights in the updating

rule eliminates any advantage a node has because of a high initial weight.

A modified rule was tried:

(r-i) =apu -,-- max(p _c(z,.i;h,k)) .
/2 ,_ ,, 1 k-i

This was also followed by a scaling step. Here, the initial node weight

influences the value at every iteration, as a sort of 'bonus' for good matches,

with a determining the importance of the initial weight. This approach was

taken rather than including t9 _jo)in the average, so that the importance of the

initial weight would not depend on the number of regions.

It is instructive to examine the behavior of the updating rules on a very

simple example. Figure 5-3 shows the results of applying Equations 5-10 and

5-11 (ct = 0), and Equations 5-12 and 5-il (a = 0.5"), on an association graph

consisting of just two nodes. The node weights are 0.1 and 0.9, and the arc

weight is set at 1, 0.1, and 0. At ct = O, the initial node weights have no effect

on the final outcome. For increasing values of _ the initial node weights have

increasing importance in the final result. If the arc weight is zero, the nodes

do not affect each other, regardless of the value of c_

.a
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Figure 5-3: Positive a allows initial node weights to affect result.

Another simple example demonstrates how the value of a can affect the

order of node weights in the final result. Figure 5-4(a) shows the initial

association graphs, which have values on nodes (B,b) and (B,c) reversed.

Figure 5-4(b) shows the result of applying Equation 5-10 (a = O) to these

graphs. Figure 5-4(c) shows the result of applying Equation 5-12, with

a = O. 15. With the original rule, the initial node weights are unimportant, but

with the modified rule, a high value of a can allow the relaxation process to

favor a node that has a high initial weight. Figure 5-5 shows the effect of

changing the value of c_ With a lower value, the arc weights are given more
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Figure 5-5: Value of a allows importance of node and arc weights to be balanced.
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importance,but a higher value givesthe node weightsmore importance. The

valueof ct affects the outcome of the relaxation process, so determining a

good value for ct is important.

5.2.5 Termination

In fuzzy relaxation, the process changes the weights of each node during

each iteration. When scaled so that the sum of node weights is constant, as

more iterations are run, the differences between previous and current node

weights become smaller and smaller. Running the relaxation algorithm until

the differences are below some value is one way to determine when to

terminate the algorithm. However, this can be wasteful, since the relative

values of the weights may not change after the first few iterations.

The number of iterations needed depends roughly on the radius of the

association graph (the maximum length of a shortest path between two

vertices). The radius determines how many iterations are needed in order to

assure that every node value has affected every other node in the graph.

Hence, the radius is the least number of iterations needed. More iterations

may be needed, depending on the particular weights on nodes and arcs in the

given problem. Because the maximum value of the product of arc weight and

node weight for a given region is used as a contribution in updating, it is

possible for more iterations to be needed as this maximum may correspond to

a different node at a subsequent iteration.

In the examples attempted, the fuzzy relaxation algorithm resulted in

probabilities for all desired mappings being above a threshold, and all other

mappings being below the threshold, after only a few iterations. After that
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point, the probabilities did not change relative order.

5.2.6 Using the Result

The problems remaining after the relaxation algorithm are to choose the

proper threshold, above which all region-object mappings will be desirabLe,

and to find and evaluate the cliques.

A hypothetical outcome is shown in Figure 5-6. We are still left with the

question of which clique is 'better.' Is it the one with the most nodes, the

highest sum of weights, or the highest average of weights? The highest

average is not a good measure, since a clique of one node of 0.9 would be

considered just as good as one with 5 nodes of 0.9 each. A reasonable way to

evaluate these c!iques is to first merge the nodes corresponding to the same

region or to the same object, averaging their weights. Then, the sum of

weights is a meaningful measure of the merit of the clique.

/'

/

, 06:

!."

•' 08)\f ",,

-_ \

/ i "-,

Figure 5-6: Which clique is 'better?'
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A simplealgorithm to find a 'good' clique which is probably the best, can

be used. Select the node with highest weight. Iteratively examine the node

with next highest weight to see if it is in the clique with all the previous nodes

selected. If so, add it to the clique and continue. If not, examine the node

with next highest weight. This procedure will result in finding only one clique,

containing the highest-valued node. This clique is Likely to be the one with

the highest node sum as well. An alternate approach to finding cliques, which

insures that the clique with the highest node sum is found, is to use the

algorithm outlined in Chapter II and sum the nodes in each of the cliques

found to determine the best clique. In spite of increased computation, the

later method is preferred.

5.3 Simulation Results. Binary Relations

The fuzzy relaxation process described above was tested on a hypothetical

example scene. Attributes of intensity, area, and circularity were used to

describe the objects.

formula:

K-R(L,/)
,,9 _1 =

K

The node weights were then determined by the following

(5-13)

where K is the number of attributes, and

K (5-14)
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.;:_ls the value of the k'h attribute for region_ ,Vj_ is the value of the k ''_

attribute for object j, and _¢', is a scaling factor which ensures that each term of

the sum is in the range [0, 1]. This results in node weights between 0 and 1, with

1 representing a perfect match and 0 representing the worst match possible,

_ven the attributes as measured. The relations 'left-of' and 'above' were defined

in terms of four quadrants from an object's centroid: above, left, right, and

below, as was shown in Figure 3-2. Because of the nature of these relations, a

variation of the method for determining the arc weights c (i, j;h. k )was used.

The arc c(i, j ;h, _:)was set to 1 if the relation between regions _and h, and

objects j and k, matched exactly. The value was set to 0 if the relations were

reversed, e.g. 'g above/-t and 'k above j.' The value was set to 0.5 if the relation

was rotated by one quadrant. So, if '_ above/-t and '/left-of k,' the arc weight

c(Z, ] ; h, k)was set to 0.5.

The relaxation updating rule used was:

PL, -- (z p, _ max(p c(_, j;tz, k)) .
h=l k-1

(5-t5)

This rule allows cz to range from 0 to 1, with 0 indicating no importance to initial

node weights and 1 indicating no importance to arc weights. This is sUghtly

different from Equation 5-12, in which o_is in the range [ O, oo).
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The folIowing cases of imperfect segmentation were tested:

Case 1 - ._I model objects have corresponding regions in the observed scene,

although there are mismeasured attributes due to segmentation errors, and

variations in relations due to a slight rotation.

Case 2- One object is missing from the observed scene.

Case 3 - The observed scene contains a spurious region that does not map to any

of the model objects.

Case 4 - The observed scene is missing an object and also contains a spurious

region.

The scene model and the four inexact segmentations are shown in Figure 5-7.

The results of the relaxation procedure are shown in Tables 5-1 through 5-4.

In Table 5-1, the finn weights obtained by using the updating rule of

Equation 5-15 are shown for e_set to 0 and to 0.2. In this case, higher values ofe_

were not necessary to obtain a good result. Even though the relations do not

match exactly, the relaxation procedure successfully updated the node weights so

that the desired mappings came out with high values.

Table 5-2 shows the case of a missing object. In this example, the value of

using a non-zero a in the updating rule is demonstrated. If ct is set to 0, we

cannot decide which of the mappings (R4, 03) and (R4, 05) is better, since the

contextual support for each is equal. If ais set to 0.2, the mapping (R4, 05) is

favored because it represents a better local match (higher initial node weight)

than (R4, 03).
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Figure 5-7: Hypothetical scene and four observed scenes with segmentation errors.
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Table 5-3 demonstrates the case of an extra region (number 6) in the

observed scene. In this example, a non-zero (zwas not needed. In the result,

(R6, 05) does have a relatively high value, but since this mapping is not

compatible with the mapping (R5, O5), which has a higher value, the clique

containing (R5, 05) would be favored.

Table 5-4 represents the most difficult case, in which there is an extra

region and a missing object. The ideal result would be to have no region map to

Object 3, and to have Region 5 map to no object. In this table, the importance of

choosing an appropriate value for ais shown. If ctis set to 0, two incorrect

mappings, (R4, 03) and (RS, O5) are favored. (R4, 05) loses to (R4, 03), since

the higher initial value of (R4, 05) is ignored. At ct ---0.6, too much importance

is given to the initial node weights, and the contextual support for nodes with

relatively low initial weights, such as (R4, O5), does not pull their weights up

sufficiently. At a ; 0.2, the node (R4, 05) is favored, as desired.
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Table 5-£: No missing or extra objects.

_TTRIB tq'E MF_..ASUREMENTS

Objec_ Intensity Area Circularity
I 0.5 1 l
2 0.2 0.6 0.61
3 0..5 1 1
4 0.8 1.7 0.77
5 0.2 0.6 0.6

_ons

1 0.5 I 0.8
2 0.4 0.62 0.67
3 0.4 03 0.8
4 0.8 1.6 0.63
5 02 0.2 0.9

w

{NTHAL WEIGHTS

•(RI,OI) 0.83

(R1,O2) 0.63

(RI,O3) 0.83

(R1,O4) 0.69

(Pd,OS)0.63

(R2,OU 0.60
•(R2,O2) 0.86
(P,2,o3) 0.60
(R2,04) 0.51

(R2,O5)0.86

(R..3,Ot) 0.6t

(R3,O2) 0.71

•(P.3,o3) 0.66
(R3,O4) 0.61

(R3,O5) 0.71

•Correct mappings

RELA_ O NS

Objects Re_oas

_ff_f _ft_f

_ 01100 I 01100
,00000 200000
300000 300000
400101 401101
500000 500000

Above Above

100011 100111
200111 200101
300001 300001
400000 400000
500000 500000

FINAL WEIGHTS

(R4,OI) 0.43

(R4,O2) 0.51

(R4,O3) 0.43

"(R4,O4) 0.86

(R4,O5) 0.51

(RS.O1) 0.61

(R5,O2) 0.67

(R5,O3) 0.61

(R5,O4) 0.31

• (R5,O5) 0.67

a: 0 0.2

• (R1,O1) 1.034 0.969

(R1,O2) 0.850 0.795
(R1,O3) 0.717 0.746

(1_,O4) 0,.5310.586
(R1,O5) 0.246 0.348

(R2,O1)

•(R2,O2) 0.937 0.897
(m,O3)
(R2,O4)
(R2,O5) 0.471 0-.5.595

(R.3,O1) 0.517 0.547

(R3,O2) 0.666 0.667

•(R3,O3) 1.034 0.933

(R.3,O4)0.653 0.635

(R3,O5) 0.763 0.754

• Correct mappings

a: 0 0.2

(R4,O1)

(R4,O2)

(R4,O3)

"(R4,O4) 0.938 0.924

(R4,O5)

(12.5,O1) 0.493 0_520

(R5,O2) 0.326 0.422

(R.5,O3) 0.889 0.829

(_,o4)
•(R5,O5) 1.034 0.935

- Initial weight too low to consider
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Table 5-2: .Missing Object 3,

ATTRIBUTE MEASUREMENTS

Objects Intensity Area Circularity
1 05 1 1
2 0.2 0.6 0.61
3 0.5 i 1
4 0.8 1.7 0.77

5 0.2 0.6 0.6

_¢_ons

1 05 1 0.8

2 0.4 0.62 0.67
3 0.8 1.6 0.63
4 0.2 O.2 0.9

r

INFHAL WEIGHTS

"(R1,O1) 0.83 (R3,O1) 0.43

(R1,O2) 0.63 (R2,O2) 0.51

(R1,O3) 0.83 (R3,O3) 0.43

(Ri,04) 0.69 "(R3,O4) O.86

(R1,O5) O.63 (R3,OS) o.51

(R2,O1) 0.60 (R4,O1) 0.61

•(R2,O2) 0.86 (R4,O2) 0.67

(R2,,O3) 0.60 (R4,O3) 0.61

(P_.,O4) 0.51 (R4,O4) 0.31

(R2,O5) 0.86 "(R4,O5) 0.67

• Correct mappings

RELATIONS

Objects Regions

Left-of Left-of

11001100 10101

21 0000 200003 00000 3:0101

400101 4]0000
5[00000

Above Above

100011 1[0011
200111 210001
3 00001 3[0000

4 00000 4 0000
5 00000

HNAL WEIGHTS

a: 0 0.2

"(R1,O1) 1.033 0.965

(RI,O2) 0.803 0.762

(R1,O3) 0.702 0.721

(R1,O4) 0564 0.616

(R1,O5) 0.231 0.415

(R2,ot)

•(R2,O2)o.9o9 0.8"rJ

(R2,O3)

(R2,O4)

(R2,O5) 0539 0.651

a: 0

(_,ot)

(R&O2)

(P,a,o3)

•(i_,o4)o.9:_

(ga,os)-

(R4,O1) 0.331

(R4,O2) 0538

(R4,O3) t.033

(R4,04)

• (R4,O5) 1.033

0.409

0569

0.914

0.931

" Correct mappings

- Initial weight too low to consider
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Table 5-3: Extra Region 6.

ATTRIB LE'E MEASU REME.'¢I"S

Objects Intensity Area CirculaH_
1 0.5 1 l
2 0.2 0.6 0.61
3 05 1 1

0.8 1.7 0.770.2 0.6 0.6

Re_ons
I 0.5 1 0.8
2 0.4 0.62 0.67
3 0.4 0.8 0.8
4 0.8 1.6 0.63

0.2 0.2 0.90.4 0.8 0.8

{NITIAL WEIGHTS

•(R1,O1) 0.83 (R4,O1) 0.43

(R1,O2) 0.63 (R4,O2) 051

(R1,O3) 0.83 (R4,O3) 0.43

(R1,O4) 0.69 '(R4,O4) 0.86

(R1,O5) 0.63 (R4,O5) 0.51

(R2,O1) 0.60 (R5,O1) 0.61
•(R2,O2) 0.86 (R5,O2) 0.67

(R2,O3) 0.60 (R.5,O3)0.61
(R2,O4) 051 (R5,O4) 0.31
(R2,O5) 0.86 "(R&O5)0.67

(R3,O1) 0.61 (R6,O1) 0.58

(R3,O2) 0.71 (R6,O2) 0,77

"(R3,O3) 0.66 (R6,O3) 0.58

(R3,C_) 0.61 (R6,O4) 058

(R3,OS) 0.71 (R6,O5) 0.77

• Correct mappings

RELATIONS

Objects

Left-of

12345

1[01100

2 00000
3 00000
400101
5 00000

Above

tlOOO11
200111
3 00001
4 00000
5 00000

Re,otis

_ft_f

11011000

2000000
3000000
4011010
5000000

61oololo

Abo_

200101l
3000010
4000001

00000
6{000000

FINAL WEIGHTS

co: 0 0.2

"(R1,O1) 1.113 1.031

(Ra,O2) o.912 0.846

(R1,O3) 0.821 0.831

(m,_) 0567 o5_
(R1,O5) 0.227 0.337

(R2.O1)

•(R2,O2) 1.025 0.969

(R2,O3)
(R2,O4)
(R2,O5) 0.31.5 0.475

(R3,O1)0.5510.579

(R.3,O2)0.690 o.69o
•(_,o3)1.o3.5o.931

<R3,O4>o.sso o.5,_
<R3,O5) 0.732 0.752

• Correct mappings

¢x: 0 0.2

(R4,O1)

(R4,O2) -

(R4,O3)

•(R4,O4) 0.939 0.903

(R4,O5)

(RS,O1) 0547 0562

(R5,O2) 0.396 0.477

(R5,O3) 0.919 0.846

(_,o4)
•(R5,O5) 0.991 0.9O7

(R6,O1)

(R6,O2) 0.362 0.463

(R6.O3)

(R6,O4)

(R6,O5) 0.828 0.804

- Initial weight too low to consider



94

Table 5-4: Extra Region 5, missing Object 3.

ATTRI B L"T'E MEASUREMEN'TS

Objects [ntensity :Lrea Circularity
t 0.5 1 1

12 0.2 0.6 0.61
_3 0.5 1 1
4 0.8 1.7 0.77
5 0.2 0.6 0.6

_¢_ons

1 05 1 0.8
2 0.4 0.62 0.67
3 0.8 1.6 0.63

04 0.2 0.2 0.9
_5 0.4 1.2 0.6

INITLM.,WEIGHTS

• (R1,O1) 0.83

(R1,O2) 0.63

(R1,O3) 0.83

(R1,O4) 0.69
(R1,O5) 0.63

RELATIONS

Objects Regions

Left-of Left-of

101100 101000
200000 200000
3 00000 3 01010
4 00101 4 00000
5100000 5 00010

Above Above

l OOOll200111 00tl

300001 i 000001
400000400000
5 00000 0000

FINAL WEIGHTS

(P,2,O t) 0.6O

"(R2,O2) 0.86

(P,2,o3) o.6o
(R2,O4) 0.51

(1_,o5) o._s

(R3,OI) 0.43

(PO,O2) 0.51

(R3,O3) 0.43

•(R3,O4) 0.86
(_,o5)o.st

• Correct mappings

(R4,O1)o.61
(R4,O2) 0.67

(R4,o3) 0.61
(R4,O4) 0.31

"(R4,O5) 0.67

(RS,O1) 0.58

(P,S,O2) 0.77

(_,o3) 0.s8

(_,04) 0.58

(Rs,o5) 0.77

a: 0 0.2 0.6

"(R1,O1) 1.148 1.057 0.913

(R1,O2) 0.910 0.844 0.721

(Ra,o3) o._6 0.845 0.828
(1tl,O4) 0.440 0321 0.641

(R1,O5) 0.292 0.289 0.536

(R2,O1)

"(R2,O2) 1.047 0.981 0.894

(R2,O3)

(R2,04)

(R2,O5) 0.4** 0.565 0.761

(R3,O1)
(R3,O2)
(m,o3)
•(R3,04)0.927 0.9o7 0.886
(,_,os)

" Correct mappings

- Initial weight too low to consider

a: 0 0.2 0.6

(R4,O1) 0.565 0377 0599

(R4,O2) 0.445 0508 0.603

(R4,O3) 0.992 0.884 0.713

(R4,O4)

•(R4,0S) 0.971 0.900 0.766

(P,5,ol)
(R5,O2) 0.317 0.436 0.631

(IU,O3)
(R5,O4)
(_,o5)0.934 0.876 o.799

..A
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5.4 Simulation Results: Real.Valued Relations

The simulation presented in this section demonstrates the usefulness of

real-valued positional relations. In the simulation of the previous section, since

only the binary relations left-of and above were used, only slight rotations of the

scene could be handled. With the relative positions of objects represented as

angles, a large rotation of the scene can be handled, by running the relaxation

process on several rotated versions of the observed scene. The rela.,cation

process applied to the rotation representing the best match should result in the

clique with the highest node sum. If only a small rotation is expected to occur,

there is no need to run the relaxation process using several rotations.

To demonstrate the use of real-valued positional relations with the scene of

the previous example, the relations in the stored and observed scenes shown in

Figure 5-8 were represented as angles in degrees that a line from the first object

to the second makes with the horizontal.

The weights of arcs in the association graph were determined by the

difference of angles in the observed scene and the stored scene. If the angles

match exactly, the arc weight equals 1. If the angles differ by 180 degrees, the arc

weight is 0. The determination of these arc weights is similar to the

determination of node weights, since real values of relations are compared for

similarity. The only difference is that in angle relations we must make

corrections so that the angle differences are not overstated. (For example, an

angle difference of 200 degrees is actually a difference of 160 degrees: no

differences can be greater than 180.) In the relaxation process, only the arcs with

weights above 0.85 were kept.
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Figure 5-8: A stored scene and rotated observed scene.

@
, ®
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320"

Figure 5-9: Observed scene superimposed on stored scene, three rotations.
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The relaxation process was run on the scenes of Figure 5-8, for 18 different

rotations, 20 degrees apart, with c_set to 0. This simulation shows that the

process can be used to rotation-normalize scenes.

The results obtained can be interpreted by finding the clique with the

highest node weight sum for each rotation. We find that the rotation that comes

closest to matching the original scene is the one with the highest sum. Table 5-5

shows these node weight sums for each rotation. In Table 5-6, the results for

rotations of 60, 240, and 320 degrees are shown. These three rotations produced

the highest-valued cliques, i.e. the ones with the highest node sums. Figure 5-9

shows the observed scene superimposed on the stored scene at each of the three

angles, to show that the favored mappings for each rotation do make sense. It is

evident that at a rotation of 60 degrees, the mappings (R1,O1), (R2,O2),

(R3,O4), and (R4,O5) are the best. At 240 degrees, the closest mappings are

(R1,O5), (R4,O1), and (R5,O2). At 320 degrees, the relaxation process results in

(R1,O2), (R2,O5), and (R4,O1) having the highest values.

Table 5-5: Sums of highest cliques, 18 rotations of observed scene.

An le

0
20
40
60
8O
100
120
140
160

Sum

6.902
5.557
4.773
9.498
7.906
7.636
6.579
5.109
5.149

An le

180
200
220
240
260
280
300
320
340

Sum

7.830
5.332
5.216
8.660
6.000
6.730
6.076
8.600
6.530

..J
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Table 5-6: Exwa Region 5, missing Object 3.

Stored and observed scenes shown in Figure 5-8.

ATTRIB L'FE MEASUREMENTS

Regiofl$

1 03 1 0.8
2 0.4 0.62 0.67
3 0.8 1.6 0.63
4 0.2 0.2 0.9
5 0.4 1.2 0.6

INITIAL WEIGHTS

•(R1,O1) 0.83

(R1,O2) 0.63

(R1,O3) 0.83

(R1,O4) 0.69

(R:,OS) 0.63

(R2,O1) 0.60
•(R2,O2) O.86

(82,03) 0.60
(R2,0a) 0.51
(P,2,os) 0.86

(R3,O1) 0.43

(R3,O2) 0.51

(Ra,O3) 0.43

•(R3,O4) o.s6
(R3,o5) o.51

• Correct mappings

(R4,O1)

(R4,O2)

(R4,mj
(R4,O4)

"(R4,os)

(_,ol)
(_,o2)
(R5,O3)
(r_,o_)
(_,o5)

0.61

0.67

0.61

0.31

0.67

RELATIONS

Objects

2 3 4 ,5
1] - 18 335 270 313
2{ - - 270 226 27O
3[ - - . 207 270

FINAL WEIGHTS

Angle: 60 240 320

"(R1,O1) 2.415 0.0G0 0.000

(R1,O2) 0.004 0.000 2.903

(R.Z,O3)0.OO41.496 1.366
(R1,O4) 0.0O4 o.ooo o.ooo
(RLOS)o.ooo 2.88O 0.050

(a2,oD -
•(R2,O2) 2.341 0.000 0.000

(R2,O3)
(R2,O4)
(R2,O5) 0.O04 0.044 2.805

(_,oi)

(R.3,O2) .

(R3,O3)

"(R.3,O4)2J_0 0.0000.050

(R3,O5)

" Correct mappings

- Initial weight too low to consider

Regions

.1 2 3 4
I - .95.05_38.0_

- - 155 190167
- - - 275 203
.... t30

5( .....

Angle: 60 240 320

(R4,OI) 0.000 2.862 2.892

(R4,O2) 0.000 0.044 0.000

(R4,O3) 0.770 0.044 0.074

(R4,O,0

•(R4,O5) 2.352 0.000 0.074

(R5,Ol)
(R5,O2) 0.000 2.918 0.000

(R5,O3)
(R5,O4)
(P,_5,OS)0.004 0.000 0.O03
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5.4,1 Discussion

,a.s mentioned previously, using a nonzero value of a allows for a

balance between the importance of good local matches of regions to

objects, and the importance of good matches between relations. At ct = 0,

the initial node weights are used only to eliminate very poor mappings by

thresholding before relaxation begins. After that point, the best match of

relations alone determines which mapping is favored, and the initial node

weights have no effect. A non-zero value of a tends to hold down the

values of nodes with low initial weights, and tends to maintain the values

of nodes with high initial weights, thus incorporating local and contextual

information into the node weights.

Even ff error-free relations are expected, a nonzero a can be useful.

In Figure 5-10, an observed and stored scene are shown, the observed

scene rotated 180 degrees. The object centroids form a square, so if the

observed scene is rotated 0, 90, 180, or 270 degrees, perfect matches can

be found among relations. In this scene, if the node weights for all

region-object mappings are above the acceptance threshold, the only way

to favor the 180 degree rotation is to use a non-zero ct, so that the initial

node weights influence the result.

Rotation of the observed scene can be handled by performing

relaxation at several rotation angles and choosing the best result. At the
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rotation angle that matches best, any remaining differences in angles

between observed and stored scene are caused by tilt and by errors in

segmentation which cause object centroids to be incorrect.

Stored Scene Scene,Observed

Rotated

. J

Figure 5-10: Stored and rotated observed scene: node weights are important.

A parallel implementation is needed to make this approach feasible.

All rotation angles should be processed in parallel, and ideally all nodes in

the association graph should be updated simultaneously in each iteration

of the relaxation process.

In this simulation, none of the object attributes were

rotation-sensitive. For example, in Figure 5-9, at 320 degrees, even though

region 2 and object 2 are not aligned correctly_ (R2, 02) has the same

initial weight as it does at 60 degrees, the correct rotation. The addition of
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shape-based attributes that are rotation-sensitive, and the measurement of

these attributes at each attempted rotation, would improve the results by

allowing poor shape matches to be discarded before relaxation.

Naturally, if the scene contains symmetries, there will be several

rotations at which the relaxation algorithm produces cliques with high

values. But if there is no way for anyone to distinguish which of several

rotations is the 'correct' one, the relaxation process cannot be expected to

succeed either.



VI. HANDLING OVERSEGMENTATION AND UNDERSEGMENTATION

The method described in Chapter V can handle extra regions, missing objects,

inexact measurements, and errors in relations. But the problems due to merged or

split regions are not addressed.

Section 6.1 describes various ways in which oversegmentation and

undersegmentation problems could be handled by the association graph relaxation

method. In Section 6.2, the best of these methods is described in more detail. A

simulation on a hypothetical scene containing split and merged regions is presented

in Section 6.3.

6.1 Approaches to the Problem

One of the reasons for pursuing the association graph approach to scene

matching is that it can allow for the mapping of multiple regions to one object, or

one region to multiple objects. In this section, various approaches to the

problem are discussed in terms of changes in the association graph before the

relaxation process is done, and any changes in the relaxation process itself, that

are needed in order to handle merged and split regions.

There are two ways of approaching these problems. One is to go back to

the segmented image when the possibility of a merged or split object is indicated.

The regions in question would then actually be split, or merged, the attributes

re-measured, and the graphs of the relations re-built. Then, a revised association

graph would be built, and the relaxation process run. The other approach is to

102
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avoid resegmenting the image, and modify, the association graph method itself to

handle over and undersegmentation. This approach appears more practical and

efficient. The simplest possible approach would be to use the relaxation process

as described in Chapter V on an association graph that has weighted arcs

between nodes that map the same region to two objects, or the same object to

two regions. This allows multiple nodes involving the same region or object to

belong to the same clique in the association graph. Since this approach has

drawbacks, it and other approaches involving modifications of the association

graph and the relaxation process are discussed in the next sections.

Obviously, we do not want to try out all possibilities for split or merged

regions. Only the regions/objects for which we suspect splitting or merging

should be investigated. For a region A, we can suspect that the mappings (A,a)

(region A to object a)'and (A,b) may both be correct ff 1) objects a and b are

near one another, 2) each region-wide attribute of A, such as texture, color, or

intensity, is close in value to the weighted average of the attribute value of

objects a and b, and 3) the area of A is close to the sum of the areas of a and b.

Condition 1 can be determined by storing an extra relation, 'next-to,' for each

scene. Object a is 'next-to' b if there is a possibility of these two objects being

merged together by segmentation. If a and b are adjacent, this possibility clearly

exists. Also, if a and b are near each other (although not touching), and have no

other objects between them, they could be merged in segmentation. This

'next-to' relation could be the real-valued distance relation discussed in Section

3.3.2.
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For oversegmentation, the three conditions above need to be applied to the

observed scene. So, we suspect that the mappings (A,a) and (B,a) are both

correct if 1) regions A and B are near one another, 2) region-wide attributes are

similar, and 3) the area of a is close to the sum of the areas of A and B.

It is possible that either or both of mappings (A,a) and (A,b) may be too

unlikely to have nodes in the association graph, and that the mapping (A,(a,b))

should be included in the graph. So, the possibilities for merged or split regions

should be determined by comparing region descriptions and 'next-to' relations

rather than by looking only at existing nodes in the association graph.

The following sections describe various approaches to handling this

problem. The sections are written assuming undersegmentation, or a merged

region, but approaches for handling oversegmentation are analogous to these.

6.1.1 Assignment of Arc Weights Only

In the simplest approach, the method presented in Chapter V can be

modified by simply allowing for arcs between nodes mapping one region to

different objects. This is illustrated in Figure 6-1. Objects a and b in the

stored scene are observed as one region, A. The weight z for arc

((A,a),(A,b)) could be determined as if it were an estimated node weight for a

node (A,(a,b)) mapping region A to both objects a and b. If the mappings

(A,a) and (A,b) are both supported by the context of the scene, they will tend

to increase. If not, it is likely that one or the other will increase, but not both.

The node weights p and q still represent the similarities between region A and

object a, and region A and object b, without taking into account the fact that



105

the region could be two objects mergedtogether. So, thesenode weightsare

likely to be quite low. The arcweightsx and y, Iikewise, are computed based

on the assumption that A is not two objects mergedtogether.

K the relaxation updating rule is not modified, a node'sweight canonly

beaffected by one contribution from each region. So, for example in Figure

6-1,only the greater ofc(A, a;A, _)) x PA,b and PA._ can affect the new

weight of node (A,a), making it unlikely that the node (A,b) could affect the

weight of (A,a). The final result would be interpreted as in Chapter V, with

nodes with weights below a threshold discarded and the remaining cliques

evaluated to find the best one. Because an arc is allowed between (A,a) and

(A,b), if both nodes have weights above the threshold after relaxation, they

can both be members of the highest valued clique.

Although this approach requires few modifications to the original

relaxation procedure, it is an unsatisfying solution because the weights on

nodes and arcs do not correspond to the reality of the situation, and all arc

weights are not calculated in the same way.

6.1.2 Re-estimation of Attributes and Relations

Another approach is to consider region A to be split into two regions, A 1

and A2, and to estimate new attributes and relations for these regions from

the regional and relational descriptions for the original region. This is shown

in Figure 6-2. The nodes (A,a) and (A,b) are replaced by (Al,a) and (A2,b),

to reflect the assumption that region A shogld be split. Relations between A 1

and A 2 could be assumed to be the same as between objects a and b, so that

J
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Observed Scene Stored Scene

p q

(A,a t A,b

,<_._//
/

Association

Graph

Figure 6-1: Handling merged regions by adding an extra arc (z).

I

Observed Scene Stored Scene

P q

Z /

Association

Graph

Figure 6-2: Handling merged regions by re.estimating attributes for the two parts.
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the value of z would be 1. The values of p and q would be updated to reflect

the fact that areas of regions A 1 and A 2 are each estimated to be in the same

proportion as objects a and b. This will increase the values of p and q if the

region should indeed be split. Values x and y would be recomputed, based on

new estimates of the locations of centroids of regions A1 and A2.

The original values on nodes (A,a) and (A,b) are lost when this

approach is taken. So, we abandon the assumptions that A could map to only

a, or to only b. If one of these possibilities represents a correct mapping, this

approach jeopardizes the chance of only one of the nodes ending up with a

high weight after the relaxation process is completed.

6.1.3 Adding the Split Nodes to the Original Graph

Rather than replacing the old nodes (A,a) and (A,b) with nodes (Al,a)

and (A2,b), we could add these new nodes to the original graph, so that we

have the association graph shown in Figure 6-3. The weights p and q on the

original nodes remain the same, and the weights p' and q' are recomputed as

described above. The weights x and y also remain unchanged, while u and w

are computed as above. The weight z will be taken as 1, since we assume A to

be split in such a way that A1 and A2 have the same relations as a and b.

The benefit of this approach is that we continue to allow for the

possibility that A maps to object a, or to object b, while adding the possibility

that A has been merged. Also, the relaxation rule does not need to be

changed. The drawback, of course, is that we have two extra nodes added to

the association graph.
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6.1.4 Creation of _Ierge Nodes

,Another approach is to create merge nodes such as (A,(a,b)), with

weights based on estimated attribute values of the merged objects, and add

these merge nodes to the original graph. The resulting association graph is

shown in Figure 6-4. The arcs adjacent to these merge nodes in the

association graph need to be determined by finding relations of the 'object'

(a,b) to other objects in the stored scene, and comparing these relations with

those of region A. This could be done by estimating the centroid of the

merged object as the midpoint of a line between the centroids of objects a and

b. Then, the relations between this new centroid and the centroids of other

objects would be found.

The reason for representing the merged region by only one node is that

the two new nodes described in the previous section are expected to respond

similarly in the relaxation process. Either both should have high values after

relaxation, or both should have low values. If only one of the new nodes has a

low value, it implies that the region in that node is spurious and also the

object in that node is missing in the observed scene, which is not a likely

occurrence. So, there is little advantage in representing the mapping of one

region to two objects by multiple nodes. It only increases the computation

needed.

6.1.5 Partial Re.segmentation of Image

The approaches described so far require us to go back to the regional

and relational descriptions of the stored and observed scenes, but not to

reconsider the scene itself. The most complicated approach would involve

identifying possible merged regions and re-segmenting that portion of the
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Figure 6-3: Adding re=estimated nodes to the original graph,
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Figure 6-4: Adding a node representing mapping of merged region to two objects.
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original image to obtain a segmentation in which the regions are not merged

into one. Then, new regional and relational descriptions for the changed

regions would need to be created, and a new association graph built.

6.1.6 Evaluation

In evaluating these approaches, there are three goals to keep in mind:

1) Nil reasonable possibilities for mappings should be retained.

2) The method should not require the addition of more nodes than

necessary to the association graph.

3) The node and arc weight computations should make sense.

The example of Figure 6-2 failed to support the first goal, since the mappings

of the whole region to each of the objects were no longer considered possible.

Nodes (A,a) and (A,b) were not retained in the association graph. The

example of Figure 6-3 hinders the second goal, because it requires the

addition of two new nodes for each split or merged region. The example of

Figure 6-1 supports the first two goals, but not the third. The arc weight

between (A,a) and (A,b) is not based on similarities in relations at all, since

the region A has no relations to itself. Also, the node weights of (A,a) and

(A,b) only reflect the similarity of the whole region A to a, and the whole

region A to b. There is nothing in the graph that reflects the similarity of

region A with the merged object (a,b), or similarities of region A1 to object a

and region A 2 to object b. So, the method of Figure 6-4 appears to be the

best.
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Intuitively, it seems that extra nodes should be added (as in Fibre 6-3)

in the case of undersegmentation, and merge nodes should be added (as in

Figure 6-4) in the case of oversegrnentation. This would allow the association

graph to more accurately reflect the actual situation. However, since there [s

little advantage to having the extra nodes of Figure 6-3, the method used here

creates merge nodes for both the merged regions and the split regions, so that

if (A,a) is compatible with (A,b) we create a node (A,(a,b)) representing the

merge of objects a and b. Likewise, if (A,a) is compatible with (B,a), we

create node ((A,B),a), merging regions A and B. A drawback of this

approach is that we add several more nodes and arcs to the association graph,

for which we must compute initial weights and update. An advantage is that

we still allow for the possibility that the regions in question have not been

split/merged, by leaving the original weights of nodes (A,a) and (A,b)

uncorrupted.

6.2 Procedure for Handling Split and Merged Regions

The procedure used is the last possibility discussed above. We allow for

creation of merge nodes which represent merging of observed regions, and

merge nodes which represent merging of objects in the stored scene. The

procedure is as follows:

1) Compute the initial node weights for the regions and objects.

2) Determine candidate regions/objects for which we will attempt to merge

corresponding objects/regions. If all of a region's node weights are below a

threshold, this indicates that none of the objects map well to that region. If

this is the case, consider pairs of objects. If a pair of objects are adjacent
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2a)

(or meet some 'closeness' criterion), have similar region-wide attribute

values, and have region-wide attribute values that match weI1 with the

region having all low node weights, and the merged object does not already

exist, then create a merged object, and compute its node weight with the

region. If the merged object already exists, simply compute its node weight

with the region. Similarly, check node weights for each object. If an object

has all low node weights, attempt to create a merged region which will map

well to the object.

Process for creating a merged object or region: Calculate attribute

values for the merged object or region. For region-wide attributes, the

new values are weighted averages of the values for the two objects

being merged. For area, the new value is the sum of the areas of the

two objects. Add a row and column for the new object to the matrices

representing the relations, and estimate values of the new object's

relations with other objects. Angle relations are estimated by simply

averaging the angle relations of the two constituent objects. The

real-valued adjacency relation (the percentage of an object's pixels that

border on another object) is computed by determining the perimeter of

the merged object (the sum of perimeters minus twice the length of

their shared boundary). Then, the percentage of border pixels with

other objects is calculated based on the new perimeter. Since the new

object is simply added to the list of objects, it can also be considered for

merging with other objects, thus allowing for merges of three or more

objects.
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Compute node weight of the merged object with the region that

prompted the attempt to find merged objects. Since the node weights

are represented in a matrix with rows corresponding to objects and

columns corresponding to regions, if the merged object is being newly

added to the list of objects, aU the other node weights for the merged

object should be initialized to zero.

3) ._ter all plausible merged objects/regions have been created and their

initial node weights computed, find the values of the arcs in the association

graph. Arcs are not allowed between nodes that include the same object or

the same region; e.g., there is no arc between node (R1,(O1,O2)) and

(R2,O2). Arcs from merged objects/regions are computed in the same way

as other arcs, since the appropriate estimated relation values for the

merged objects are included in the relation matrices, just as for any other

objects.

4) Perform the relaxation process on the association graph which includes

nodes involving merged objects or regions.

A slight change in the relaxation updating rule is necessary. Since two

nodes including the same region are defined as incompatible, nodes involving

regions that belong to merge nodes have fewer terms possible in the sum in the

updating rule, which is an unfair disadvantage. Nodes including only a region

that is not involved in a merge node have possible terms in the sum from every
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region. To make up for missing terms, a merge compensation factor, b, is

included in the updating rule. The value of _ (_) is then counted b, times in the
t-..t I

sum. So, the new updating rule is given by:

(r*l) __(01 ¢.. [ _ _ (¢) .,_ , ,- ,H_j max(p_:_c(i j;h. k))
p,j "_H,_ (1-_x) n _-iI- _-t

(d-l)

An example of this is shown in Table 6-1. Assuming there are four regions, 1, 2,

3, and (1,2), the table shows that for nodes which map region 1 (or 2) to some

object, there can only be terms in the sum in the updating rule from nodes

involving regions 1, 2, and 3. However, since nodes involving region 3 could be

compatible with nodes involving any of the regions, they have four possible

terms. Nodes mapping region (1,2) to any object can have terms from only

region 3 and region (1,2). The factors b, compensate for these missing terms by

counting the value of p _jmultiple times.

Table 6-1:

P_j

Plj

Pzi

P3j

P(].z)j

Missing terms due to merged regions.

Regions Affecting

Sum

1 2 3 (1,2)

x x x

x x x

x x x x

x x

b_

2

2

1

3
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Example:

Figure 6-5 shows that the relaxation algorithm can use the context of the

scene to favor the mapping of a merged region over those of non-merged regions

that happen to have higher initial node weights.

Original Association Graph

0.3 0.6

0.3 o.v \ CL]

0.8

Result, o< = 0 Result, O< = 0.5

0.4 0.7 1.0

Figure 6-5: Example of relaxation process including a merged region.
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In this example, the weight of (R2,O1) is 0.3, (R1,O1) is 0.9, and (R(1,2),O1) is

0.8. But the weights on arcs connecting (R(1,2),O1) to the other correct nodes

((R4,O3) and (R3,O2)) have higher values than those for (R1,O1), indicating

that within the context of the scene, the merged region is a better mapping. At

ct = 0, the result of relaxation is that the clique containing (R(1,2),O1), (R4,O3),

and (R3,O2) is the highest-valued. For a very high value of c_, the initial node

weights carry enough importance that the clique containing (R1,O1), (R2,O2),

and (R4,O3) becomes the highest-valued.

6.3 Simulation with Split and Merged Regions

The procedure described above was performed on the hypothetical scene

and the four inexact segmentations shown in Figure 6-6. The attributes used for

description of regions were intensity, texture, and area. The real-valued relations

used were the angle that a line between re#on centroids makes with the

horizontal, and the percentage of region boundary adjacent to another region.

For Cases 1 and 4, the intensity value for Object 2 was set to 0.1. For Cases 2

and 3, in which the hypothetical segmentation has merged Objects 1 and 2, the

intensity for Object 2 was set to 0.5, a more plausible value, since the intensities

of Objects 1 and 2 would likely be similar if the two objects were merged.

The results for Case 1, in which Object 1 is split into Regions 1 and 5, are

shown in Table 6-2. The process correctly mapped Region 6, which includes

Regions 1 and 5, to Object 1. Even if the initial values of (R1,O1) and (R6,O1)

are switched, the improved context support for (R6,O1) causes that mapping to

be favored.
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Scene Model

i 2

3

4

Observed Scenes

Case 1: Split region.

4

3

Case 2: Merged region.

3
l

/

Case 3: Split aad merged regiom. Case 4: Three-way sprit region.

4 4
i i 2

2 5 1

3

Figure 6-6: Hypothetical scene and observed scenes with split or merged regions.



Table 6-2: Simulation results; Case 1, spLit Object 1.

118

r" ATTRIB4JTES RELATIONS
..°°...o.° oo.o.o°..

OBJECT Area Intec_ity Texture 06JECT$

1 I.&3 0.7 0.8 AngLe ReLation

2 0.23 0.1 0.5 I 2 3 4

3 1.82 1.0 0.0 .................

& 0.25 0.1 0.2 11 0 37 355 10

Z[ Zlr 0335 0

eeOl_ 31 175 lSS 0 65

1 0.98 0.6 0.85 4[ 190 180 245 0

2 0.._ 0.2 0.4

3 2.22 0.9 0,05

4 0.28 0.02 0.35

5 0._6 0.65 0,8

6 I ._ 0.62 0.83

Init_st node weights
............g.......

(RI,01) 0.80

(R1,02) 0.57

(R1,03) 0.39

(R1o04) 0.45

(R2,01) 0.43

*(R2,02) 0.90

(R2,03) 0.33

(R2,04) 0.67

(13,01) 0.57

(R3,02) 0.22

"(R3,03) O.M

(R3,O_) 0.34

(R4,01) 0.33

(R4,02) 0.91

(R4,_) 0.27

*(R4,O_) 0.91

(R5,01) 0.75

- (R5,02) 0.66

(R5,03) 0.34

(R5,04) 0.34

*(R6,01) 0.89

(R6,02) 0.00

(R6,03) 0.00

(R6,_) O.O0

REGIONS

Angle Relatio_
I 2 3 4 5 6

o.. .... ..°...- ..... o°.......o..

lJ 0 25 _ 10 270 0

Z[ Z05 0 330 7 230 21r.5

3[ 168 150 0 85 187 _77.5

41 19o 187 z6s o zos1973
sl 90 so r 23 o o
6[ 0 37.5 357.5 17.5 0 0

Adjacency hL|t{on Adjacency Relation

1 2 3 4 I 2 3 4 5 6

........o..o..°.... ..................-.----- .... o

11 o o.o9 o o 11o O.Ol o o o.28o
Z[ 0.24 0 0 0 2[ 0.09 0 0 0 0 0.0¢

3[ 0 0 0 O.Z 3[ 0 0 0 0.28 0 0

4[ o o I o 4[ o o 0.6 o o o

5j 0.3_ 0 0 0 0 0

6J 0 0.01 0 0 0 0

Firml node weights
.=..=._...._o.=...

All=hi • 0.2 %nitilL welg_tl of (RI,01), (R6,01) su|tched

0.828 0.857

o

o

0.9?9 0.9?9

0.638 0,639

0.979 0.979

0.628 0.629

0.983 0.984

0.796 0.797

.

1.082 1.050

_esir_ _,a_inQS - [niliq_ weight too tou to consider
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Table 6-3 shows the results for Case 2, in which Objects 1 and 2 are merged

into Region l. Again, the process correctly mapped Region 1 to Object 5, which

includes Objects 1 and 2. The mapping of Region I to Object 1 also attained a

high value, since Region 1 matches quite well to Object 1 alone, and its centroid

is close to the centroid of Object l, which leads to high arc values for the node

(RI,01).

Table 6-4 contains the results for Case 3, in which Objects 1 and 2 are

merged into Region 1, and Object 1 is split into Regions 1 and 2. The mapping

desired in this case is Region 5 (Regions 1 and 2) to Object 5 (Objects t and 2).

At et -- 0.2, the mapping (R5,O1) is wrongly favored. At c_ = 0.25. the correct

mapping (R5,O5) prevails.

Table 6-5 contains the results for Case 4, in which Object 1 has been split

into three regions, Regions 1, 5, and 6. This example illustrates the way that

more than two regions may be merged into one. Regions are merged pairwise,

and the new regions are added to the list of regions, so that they are considered

for future merges. In this example, Region 7 is the merge of Regions 1 and 5;

Region 8 is the merge of Regions 6 and 1, Region 9 is the merge of Regions 6

and 5; and Region 10 is the merge of Regions 8 (6 and 1) and 5. Of all nodes

mapping to Object 1, the node (R10,O1) has the highest weight after relaxation.

In each of the examples with c_= 0.25, the clique with the highest node sum

after relaxation represents the correct mapping.
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Table 6-3: Simulation results; Case 2, merged Objects 1 and 2.

ATTR[BUTES

OBJECT Aree Intensity Texture

1 1.83 0.7 0.8

2 0.23 0.5 0.5

3 1.82 1.0 0.0

4 0.25 0.1 0.2

5 2.06 0.68 0.77

RIEGION

I 2.02 0.65 0.8

2 2.22 0.9 O.OS

3 0.28 0.02 0.35

RELATI_S

..... oo.o

OBJECTS REGIONS

Angle Relation Angle Relation

1 2 3 4 5 1 2 3

°_o.=.oooo........ ................

I I 0 37 355 10 0 11 0 350 12

21 217 0 335 0 0 2t 170 0 8S

31 175 lSS 0 6S 16S 31 192 26S 0
41 190 180 245 0 185

SI 0 0 345 5 0

Adjacency Relation

I 2 3 4 5

.o.o ...... o. .... .o.==o

11 o o.o9
21 0.24 0

31o o

41o o

SlO o

0 0 0

0 0 0

0 0.20

1 0 0

0 0 0

Adjacency Relation

I 2 3

oo. ........ °oo°.

110 o o

21 o o 0.28
3l o 0.6 o

Initial node weights

oo°i.oo.o. ..... ....o

(R1,01) 0.95

(R1,02) 0.53

(R1,03) 0.53

(R1,04) 0.28

Nerge object 05=01÷02

*(R1,05)

(R2 01)

(R2 02)

*(R2 03)

(R2 04)

(R2 05)

(R3 01)

(R3 02)

(R303)

t(R3,04)

(R3 OS)

0.97

0.57

0.36

0.88

0.34

0.00

0.33

0.77

0.27

0.91

0.00

* Oesired mal=pings

Final node weights

ALma = 0.2 Atphm • 0.25

1.009 1.004

1.010 1.006

0.948 0.943

0.556 0.575

0.957 0.953

- [nitiel weight too Low to consider

d
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Table 6-4: Simulation results; Case 3, split Object I, merged Objects 1 and 2.

OBJECT

1

2

3

4

5

REG; ON

1

2

3

4

5

ATTRIBUTES

...... o.oo

Area Intensity TexCure

1.83 0.7 0.8

0.23 0.5 O.S

1.82 1.0 0.0

0.25 O. 1 0.2

2.06 0.68 0.77

1.48 0.65 0.6

0.5 0.7 0.7

2.22 0.9 0.05

0.28 0.02 0.35

1.98 0.66 0.63

Initie[ node weights

(R1,01) 0.85

(R1,02) 0.70

(R1,03) 0.59

(RI,04) 0.45

Merge object 05=01+02

RELATIONS

OBJECTS REGIONS

AngLe ReLation AngLe ReLation

I 2 3 4 5 I 2 3 4 5

.....o ........ . ........ .......oo.....o. .....

11 0 37 355 10 0 11 0 265 346 3 0

21 217 0 335 0 0 21 85 0 5 35 0

31 175 155 0 65 165 31 166 185 0 85 175.5

41 190 180 245 0 _85 41 183 215 265 0 1_

51 0 0 345 5 0 51 0 0 355.5 19 0

Adjacency ReLation

1 2 3 4 5

....... o=....=Qoo.oo°=

11 o o.o9
21 0.24 o
31 o o

41 o o 1
Sl o o o

Fina( node weights

ALI_e • 0.2 Atl_a • 0.25

0.762 0.772

0.715 0.715

(R1,05) 0.83 0.765 0.773

(R2,01) 0.74 0.714 0.717

(R2,02) 0.81 0.716 0.7"26

(R2,03) 0.40

(R2,04) 0.56

CR2,05) 0.71 0.692 0.695

(R3,01) 0.57

(R3,02) 0.36

*(R3,03) 0.88 0.922 0.919

(R3,04) 0.34

(R3,0S) 0.00

(R4,01) 0.33

(R4,02) 0.77 0.667 0.675

(R4,03) 0.27

*(R4,04) 0.91 0.918 0.917

(R4,05) 0.00

Merge regio_ RS-RI+R2

(R5,01) 0.89

(R5,02) 0.60

(R5,03) 0.00

(R5,04) 0.00

*(R5,05) 0.93

=Oesired mppi rigs

Adjacency Relation

I 2 3 4 5

..o..o. ..... Q...........

1.067 1.047

I.068 1.052

- InitieL weight too Low to consider

o o o 11 o o.21
0 0 0 21 0.33 0

0 0.20 31 0 0

o o 41o o
o o 51o o

0 0 0

0 0 0

0 0.28 0

0.6 0 0

0 0 0
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Table 6-.5: Simulation results; Case 4, three-way split of Object 1.

OBJECT

1

2

3

4

REGION

I

2

3

4

5

6

7

8

9

10

ATTRIBUTES

Area Intensity Texture

1.83 0.7 O.8

0.23 0.1 0.5

1.82 1.0 0.0

0.25 0.1 0.2

0.98 0.6 0.85

0.38 0.2 0.4

2.22 0.9 0.05

0.28 0.02 0.35

0.29 0.65 0.8

0.17 0.7 0.75

1.27 0.61 0._

1.15 0.61 0.84

0.46 0.67 0,78

1.44 0.62 O. 83

RELATIONS

OBJECTS

Angle Relatfon

1 2 3 4

............... ......

11 0 37 355 10

21 217 0 335 0

31 175 155 0 6S

41 190 180 245 0

1

2

3

4

5

6

?

8

9

10

REG%ONS

Angle Relatfon

1 2 3 4 5 6 7 8 9 10

.............................................. ...... °.......

0 25 348 10 265 283

205 0 330 7 225 240

168 150 0 85 185 180

190 187 265 0 205 205

85 45 5 25 0 25

103 60 0 25 205 0

0 35 356.5 17.5 0 334

0 42.5 354 17.5 235 0

94 52.5 2.5 25 0 0

0 43.75 359.5 21.25 0 0

0 0 274 0

215 222.5 232.5 223.75

176.50 174 182.5 179.5

197.50 197.5 205 201.25

0 55 0 0

154 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Adj ace_:y Retation

1 2 3 4

.°._...............

11o 0.o90 o
21 0.24 0 0 0

31 o o o 0.2

41o o I o

Adjacency Relation

1 2 3 4 5 6 7 8 9 10

................................. .... .........°... .....

11o O.Ol
21 o.o9 o
31o o
41 o o
Sl 0.28 0

61 0.32 0

71 o O.Ol
81 o o.oi

91 0.38 0

lol o o.oi

0 0 0.16 0.12 0 0 0.28 0

0 0 0 0 0.09 0.09 0 0.09

0 0.28 0 0 0 0 0 0

0.60 0 0 0 0 0 0 0

0 0 0 0.20 0 0.48 0 0

0 0 0.25 0 0.57 0 0 0

0 0 0 0.19. 0 0 0 0

0 0 0.22 "0 0 0 0 0 .

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
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Table 6-5 (continued)

[ni_iet raxle _i_ts

-.-°°....°o. ........

Final r'ax_ _,eights

-oo--o°....°°o..o_

ALma • 0.2 ktl_a • 0.25

(R1,01) 0.80 0.656 0.674

(R1,02) 0.57

(R1,03) 0.39

(RI,0_) 0.45

(R2,01) 0.43

*(R2,0E) 0.90 0.920 0.920

(R2,03) 0.33

(R2,04) 0.87 0.721 0.733

(R3,01) 0.57

(R3,02) 0.22

t(R3,03) 0.88 0.945 0.940

(R3,04) 0.34

(R4,01) 0.33

(R4,02) 0.91 0.719 0.733

(R4,03) 0.27

t(R4,04) 0.91 0.942 0.941

(RS,01) 0.73 0.621 0.634

(R5,02) 0.69

(RS,03) 0.31

(R5,04) 0.57

(R6,01) 0.70 0.609 0.621

(R6,02) 0.69

(R6,03) 0.33"

(R6,04) 0.57

Nerge region RTzRS*R1

(R7,01) 0.86 0.940 0.934

(R?,OZ) 0.00

(RT,03) 0.00

(R?,04) 0.00

_lerge reg|o_ RS=R6+R1

(R8,01) 0.84 0.930 0.923

(R8,02) 0.00

(R8,03) 0.00

(_8,04) 0.00

Herge region R9-R6+RS

(R9,01) 0.73 0.871 0.859

(R9,02) 0.00

(R9,03) 0.00

(R9,04) 0.00

Nerge regi'on RIO=RS+R5

*(R10,01) 0.90 1.179 1.140

(R10,02) 0.00

(R10,03) 0.00

(R10,04) 0.00

* Desired map_(ngs - Initilt _igl_t too to_ _o consider
i
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To test the ability of the relaxation process to determine the correct

rotation of an observed scene, the scene of Case 1 was processed, with different

rotation angles at steps of 20 degrees. Table 6-6 shows the sum of nodes in the

highest-valued clique found for each angle.

Table 6-6: Sums of highest cliques, 18 rotations of Case 1.

_.aga

0
2O
4O
6O
80
100
120
140
160

Sum

3.985
2.972
3.124
2.999
2.099
2.099
1.843
1.823
1.801

aag_

180
200
220
240
260
280
300
320
340

Sum

1.795
1.816
1.837
1.857
1.988
2.572
2.250
4.127
4.035

This example shows that this process for rotation normalization is not

foolproof. There were two rotation angles, 320 and 340 degrees, at which the

sums of nodes in the highest clique were greater than at 0 degrees, the correct

rotation. These results would seem to indicate that the rotation of 320 degrees

yields the best match of the observed scene to the stored model. To understand

why this result came about, it is helpful to examine the arcs of the association

graphs at rotations of 0 and 320 degrees. At 0 degrees, the incorrect mapping

(R4,O2) happens to have high enough compatibility with (R1,O1), (R5,O1), and

(R6,O1) that it has arcs in the association graph connecting it with these three

nodes. Thus, in the updating formula, the node (R4,O2) is receiving

contributions from Regions 1, 5, and 6. So, at 0 degrees rotation, the node
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(R4,O2) hasa f_nalweight of 0.651. In contrast, at 320 degrees,the node

(R4,O2) hasno arcs,and at 340 degrees,it has two rather than three. This teads

node (R4,O2) to havea lower weight at theserotations, and so the other nodes

have relatively higher weights. The initial nodeweights, and the finn weights for

rotations of 0, 320,and 340 degrees,areshownin Table 6-7.

Table 6-7: Initial and final node weights,three rotations of Case 1.

Initial
Node Weights Final Node Weights

(R1,O1) 0.80
" R2,O2) 0.90

R2,O4) 0.87
* R3,O3) 0.88

R4,O2) 0.91
* R4,O4) 0.91

RS,O1) 0.75
" R6,O1) 0.89

"Desired mappings

0 ° 320 ° 340 °
0.828 0.850 0.820
0.973 0.912 0.975
0.657 0.761 0.693
0.971 1.024 0.984
0.651 0.310 0.539
0.977 1.043 1.002
0.794 0.866 0.827
1.064 1.148 1.074



VII. PROOF OF CONCEPT

The ideasdevelopedhere were implemented in a demonstration object

location system for NASA. The object of the work was to explore some of the issues

involved in implementing a machine vision system to be used in conjunction with a

robot arm in the space station laboratory module. Section 7.1 provides background

on possible uses of machine vision in the space station environment. The

demonstration system developed for the project is described in Section 7.2. Section

7.3 describes the relaxation process applied to an example scene used in the

demonstration system.

7.1 Background

There is interest at NASA in investigating the use of vision systems to

automate routine space station operations, relieving crewmen of repetitive tasks.

Within the space station modules, a vision intelligent robot could be used for

operations such as location, fetching, storing, and repairing. Vision systems

could be used to monitor experiments, record data, and alert crewmen only when

necessary.

Vision systems would also be useful outside the space station, for

applications such as orbital docking, servicing, and assembly. The use of vision in

docking is particularly beneficial, since it eliminates communication time delay

for vehicle control. NASA is also investigating the possibility of using vision
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systemsfor weather prediction by tracking cloud motion. In short, reliable vision

systemsare needed to automate spacestation and other advancedNASA

operations.

A necessarycomponent of anymachinevision systemis the ability to locate

objects of interest. It is this component that wasexplored in detail in this

research.

7.2Description of System

The system,developed on a commercially available image processing

system(Perceptics),with the relaxation algorithm developedon an IBM PC,

demonstratesthe object location component of a machinevision system. Given a

request to find a particular object, the system returns the location of the object.

The assumptions made in developing the demonstration system were as

follows:

1) The robot arm's exact position may be unknown.

2) The interior of the laboratory module is broken into several separate

scenes, or panels.

3) All of a panel will appear in the field-of-view at once.

4) There will be changes in scale, translation, and intensity, and slight changes

in rotation and tilt.
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l)

The steps in the processing are as follows:

Identify the panel present in the input scene. This is done by searching for

prominent features that distinguish among scenes. Low-level features, such

as 'two bright, nearly horizontal lines,' or 'ten nearly vertical lines of high

texture' are used.

2) Based on the approximate location of the distinguishing features, find the

region of interest on the panel that contains the desired object. This is done

to cut down on the number of objects that must be dealt with at one time.

3) Run the segmentation process provided with the Perceptics. This process

produces a list of regions found in the image. Each region's location,

perimeter, area, length, height, and circularity are listed, along with some

other attributes.

4) For objects that lie along rows and columns of objects on the panels, a

simplified object location process is performed. This process finds probable

locations of objects, based on intersection points of lines of high texture

(intensity variation). Then, regions found by the segmentation process are

matched with these objects.

5) For objects that cannot be located by the simple process of Step 4, the

relaxation process is run on the remaining regions to find the best matches

between regions and objects.
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7.3 Relaxation Process

The relaxation process described in Chapters V and VI was tested on an

actual example of a scene having segmentation errors. The scene, annotated

with object numbers, is shown in Figure 7-1.

The attributes used to describe the objects were intensity, texture (variance

of intensity), extent (height x width), and elongation (width/height). In addition,

the pixel coordinates of the regions were used, in order to ruie out mappings of

objects to regions which are very far away from their approximate expected

location.

The real-valued positional relation of angle between centroids was used.

Also, a binary relation, 'nearby,' was defined such that Region A is nearby

Region B iff the distance between their centroids is less than a threshold based

on the sum of the heights and widths of the two objects. Both relations were

used in determining association graph arc values. Additionally, the 'nearby'

relation was used in the procedure to merge oversegmented regions: two regions

could not be merged unless the relation 'nearby' existed between them.

The practical considerations of nm_g the relaxation procedure on a

typical real-world problem became apparent in running this example, since the

stored scene had 13 objects and the observed scene contained 50 regions. The

example exhibited many problems of mismeasured region boundaries and extra

regions. There was also one missing object and several objects that had been

split into multiple regions by the segmentation process.
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Figure 7-1: Space shuttle simulator panel used as example scene.
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Three different ideas were explored with this example. First, using the

process described in Chapter V (no merging of regions), two forms of the

updating rule were tried. Then, the value of awas tested, at 0 and 0.25. Then,

the ideas of Chapter VI were applied to this example, to show how the procedure

can handle some real-world examples of over-segmentation.

The results of the various experiments with the relaxation process bear out

the previous conclusions regarding attribute and relation selection. Due to

practical considerations, the attributes used were not ideal. Because of

segmentation errors, the attributes that were based on perimeter were

unreliable, and were not used. Attributes of intensity and texture (variance of

intensity over a region's area) were of limited usefulness. In the scenes being

used, the various objects all had approximately the same intensity and texture.

The corresponding observed regions did not have intensity values that matched

the objects well, because the segmentation process is based on finding regions of

high intensity. The segmentation algorithm tends to outline the brightest parts of

the objects, and to go around the shadows or darker parts. The variations in

these values could not be used to narrow down mappings of regions to objects,

except to help in ruling out the mappings of some extra regions to objects.

7.3.1 Two Forms of Updating Rule

One issue that was brought to light with this example is the form of the

updating rule. In the formulation used in previous chapters, a node's weight

is updated by the highest contribution (arc weight x node weight) for each

region. This original updating rule is:
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However, in this example, there are manyextra regions. Any contributions to

a node's weight from the nodes invoMng these extra regions are spurious, so

it was expected that the result would be negatively affected by this problem.

So, a comparison was done between the original updating rule (above) and

the following rule:

p_'l)=ap_°l) ÷( l -a ) . (6-2)-I a°l

The change is that the sum has one term for each object, and the maximum is

taken over the n regions for each given object.

Figure 7-2 shows the result of the original rule, Equation 7-1. Regions

are labeled with the object number of Figure 7-1 to which they were found to

map by the relaxation algorithm. (The oversegmented objects, numbers 1, 3,

11, and 13, were not attempted.) There are several errors in the favored

mappings found by the original rule. An extra object in the upper right corner

of the picture has been wrongly labeled as Object 2. Also, the wrong region

has been labeled as Object 8. There was also an error on Object 12. The

region corresponding to the printing on the panel under the switch was

labeled as Object t2. Figure 7-3 shows the result of using Equation 7-2 as the

updating rule. All the mappings that were found were correct. This result

suggests that if many extra regions are expected, given a particular application
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Figure 7-2: Object assignments resulting from using the original updating rule.
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Figure 7-3: Object assignments resulting from using the modified updating rule.
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and segmentation algorithm, it is better to use Equation ;'-2 as the updating

rule. If the segmentation algorithm is ex'pected to miss many objects, the

original rule of Equation 7-1 is preferred.

7.3.2 Value of Alpha

Another experiment explored using two values of ct: 0 and 0.25. In this

application, the attributes that were readily measured with the system being

used were not very effective in distinguishing among the different types of

objects or distinguishing the extra objects from the stored objects. So, it was

expected that using a lower value of ctwould provide a better result. The

updating rule of Equation 7-2 was used, with (x set to 0 and 0.25.

(Oversegrnented objects, again, were not attempted.) Both led to correct

mappings for objects, as shown in Figure 7-3. The sum of the node weights of

the favored nodes for each object was 7.866 at ct = 0.25, and 8.164 at c_ = O.

This indicates that in this application, since the relation values were more

reliable than the attribute values, a lower value of ctprovided a less

ambiguous result.

7.3.3 Handling Oversegmentation

This example contained several instances of oversegmented objects.

Because of the relatively large number of regions, this posed a practical

problem in running the relaxation process on a PC, in terms of memory size

and time requirements. Judicious selection of thresholds on the irtitial node

weights and arc values was necessary to keep the number of arcs in the

association graph down to a manageable level. In this example, 77 new

regions were created by the merging process. The resulting association graph

contained 7,248 arcs above the arc weight threshold.
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Two regions were considered for merging if an object had all its initial

node weights below a threshold, and if the two regions were nearby and had

similar region-wide attributes (intensity and texture), and if the node

representing the mapping of the merged region to the object had a weight

above a threshold. New regions created by this process were added to the list

of regions, and later considered for further merges with other regions, thus

allowing for merges of more than two regions.

The results of the relaxation process on the oversegmented objects are

shown in Figure 7-4. (Results for objects which were not oversegmented were

the same as in Figure 7-3.) The merged region that mapped to Object 1

consisted of three regions: the main part of Object 1, the region

corresponding to the left bracket of Object 1, and the region corresponding to

the line of printing under the object. For Object 3, the top and bottom

portions of the object, along with the printing under it, merged to form the

region that was favored by the relaxation process. The left bracket and the

main part of Object 11 were mapped to that object. The main part of Object

13 merged with the printing above the object to form the region that mapped

best to Object 13. In each case, there were some errors, with regions that

could legitimately be considered part of an object not included in the favored

regions, or extra objects (printing) being included. However, the results are

reasonable, as can be seen by examining the original scene of Figure 7-1. In

some cases, it is difficult to tell where an object ends and the printing below it

begins.
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Figure 7-4: Object assignments obtained by merging oversegmented regions.
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VIII. CONCLUSION,_N'D RECOMMENDATIONS

8.1 Conclusion

This re p o r t describes an approach to inexact scene matching in which

we can find the 'best' mapping of observed regions to stored objects, given

degrees of closeness in region-object matches and in relation matches. This is

important since segmentation errors render exact matches impossible.

The selection of attributes and relations for the description of scenes was

discussed in some detail. Real-valued relations have proven to be very helpful in

inexact scene matching, because they allow for measurements of the closeness of

match between expected and observed relations.

Previous work has demonstrated the use of clique finding within association

graphs to model the determination of the 'best' region-to-object mapping.

However, that work was limited by the use of 'yes or no' choices in that it was

only specified that a region could or could not map to a given object, and that

two mappings were or were not compatible with each other. The work presented

here extends the use of the clique finding matching approach by weighting the

nodes and arcs of the association graph to allow for the quantification of how

good a mapping is, and how compatible two mappings are.

Applying relaxation to the weighted association graph simplifies the

selection of the best clique by eliminating nodes that have low values after

138



Y

139

relaxation, and bv allocating the cliques to be evaluated by examining node

weights only and ignoring arc weights, as the relaxation process incorporates the

contextual information into the node weights. As mentioned in Chapter IV,

relaxation has been used in conjunction with ctique finding in association graphs

for boundary matching, but in that research, discrete relaxation was used only to

reduce the size of the association graph and not to simplify the evaluation of

cliques.

Most previous uses of relaxation for scene matching have not been

incorporated into the framework of clique finding in association graphs. After

the relaxation process, the result is obtained by selecting the highest valued node

for each object. This method does not deal with missing or merged objects, and

does not handle the possibility that these highest-valued nodes may not all be

compatible with one another. Also, previous uses of relaxation for scene

matching or similar problems have not used an updating rule that allows for the

balancing of importance of initial node weights (local information) and arc

weights (contextual information). In scene matching, it is essential to take both

the local and contextual information into account when deciding on the best

mapping.

A means of handling problems of oversegmentation and undersegmentation

has also been presented here. By identifying possible split or merged regions and

adding merge nodes to the association graph, mappings of one region to multiple

objects, one object to multiple regions, and even multiple regions to multiple

objects are possible with little modification to the relaxation process.
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8.2 Recommendations

There are many opportunities for furore research using this work as a

foundation. The major areas for further work are listed below:

1) There is a need for research into the determination of the various

thresholds and parameters that must be set properly in order to produce

good results. These thresholds and parameters are listed and explained

below.

Initial mapping threshold: Nodes with weights below this threshold are

dropped from consideration. The threshold should be low enough that it

does not eliminate correct mappings with low initial weights due to

segmentation errors. But it should be high enough to eliminate

unnecessarily processing bad mappings, and not to allow a node with a very

low initial weight to be wrongly favored by the relaxation process because it

happens to have good contextual support.

Arc weight threshold: Since there are weights on the arcs of the

association graph, these values must be thresholded so that only the nodes

connected by arcs with values above the threshold are considered

compatible. The arc weight threshold should be low enough to retain

compatibility between mappings that are indeed compatible but may have a

low arc weight due to mismeasured relations. The threshold should be high

enough not to assume compatibility between two mappings that are

incompatible. In the evaluation of the association graph that results after

relaxation, having fewer arcs will result in smaller cliques.



.-'w----

141

Merge consideration threshold: In determining whether to look for

possible regions to merge, the algorithm looks for an object that has ai1 low

node weights. The merge consideration threshold is the value below which

the node weights are considered to be low. This threshold should be high

enough to consider merges even when art initial node weight is somewhat

high: it could be falsely high, or context support could be higher for a

merged region. The threshold should be low enough so that time is not

wasted considering merges for regions/objects that already have good

matches. (In the interest of accuracy, this threshold can be set high, so that

more possibilities of merged regions/objects are considered.)

Similarity threshold: In order to merge two regions, their similarity (the

'node weight' achieved by comparing their region-wide attributes) must be

above this threshold, and the similarity of each region to the object that

prompted the merge attempt must be above the threshold. If this threshold

is too low, there will be a proliferation of merge nodes, increasing the size

of the association graph and the processing required, and increasing the

chance of an incorrect merged region/object being wrongly favored by the

relaxation process. If the threshold is too high, the process fails to merge

regions/objects that should be merged.

The parameter a: As discussed previously, a provides a balance

between the importance of the initial node weights (local compatibility) and

the association graph arc values (contextual support). If a is too low, a good

mapping may have a low node weight after relaxation because of
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mismatchesin relations due to segmentation errors. If otis too high, the

contextual support for a mapping with a low initial weight due to

segmentation errors will not pull the node's value up sufficiently.

Final node threshold: After relaxation, any nodes with weights below

this threshold are eliminated from consideration. If the threshold is too

low, an incorrect node with a very low weight could be included in the

clique representing the best mapping. This node should not be thought of

as adding to the merit of the mapping. If the threshold is too high, a correct

region-object mapping may be eliminated.

In testing the algorithm, when a correct mapping fails to be favored or

an incorrect mapping is improperly favored, it is relatively easy to

determine what sort of adjustment to thresholds or parameters would

improve the result. In applying this algorithm to a particular type of scene

with a given segmentation algorithm, a useful enhancement would be a

system for tuning these thresholds and parameters by the use of a set of

stored scenes and observed scenes exhibiting segmentation errors typical of

those expected in actual use. The system would perform the algorithm on

the sample scenes. When errors occur, the system would determine what

adjustment would be helpful in improving the result. For example, if a

node that should have a high weight after relaxation has a low weight, and if

its initial weight is high, increasing the value of et could improve the result.

If a merged region should have been created to map to a particular object,

it could be that the similarity threshold was too high.
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2) ,Another area in which further research is needed is in parallel

implementations of the algorithms described here. All of the procedures

involved, including measurement of attributes and relations, determination

node and arc weights, determination of merge regions and objects, and the

relaxation process itself, are computationaUy intensive. So, any

impIementation that does not make use of parallel processing is not likely

to be practical on problems of typical size.

3) In the handling of split or merged objects, finding candidate regions or

objects for merging by analyzing the initial node weights before relaxation

may not be the best approach. Because contextual information is not

considered, many unnecessary merges may be considered, and some

necessary ones may be overlooked. A better approach may be to run the

relaxation algorithm on the original regions and objects first, assuming that

there are no split or merged objects. Then, the final node weights may be

analyzed to determine if the relaxation procedure should be performed

again, on an association graph to which merge nodes have been added.

4) Another area in which Mere are many possibilities for more research is the

use of this matching approach in conjunction with primitives, attributes, and

relations different than those used here. The use of image regions as

primitives is appropriate for applications in which it is expected that whole

regions will usually be visible in the camera's field of view. In applications

such as aerial photographs, the use of segments of the curves that constitute

the region boundaries may be more appropriate, because often only parts of
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regionsare within the field of view of the camera. Using generalized

relations, which relate groups of objects, rather than simply pairs, may be

useful in handling problems such as rotation.

5) The use of relaxation in conjunction with clique finding in association

graphs may have applications in areas that are unrelated to scene matching.

This approach may be useful any time a mapping of units to classes is

sought, in which compatibility of individual mappings with each other is

important and many-to-many mappings are possible.
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